These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 12633292)

  • 1. Observation of collective-emission-induced cooling of atoms in an optical cavity.
    Chan HW; Black AT; Vuletić V
    Phys Rev Lett; 2003 Feb; 90(6):063003. PubMed ID: 12633292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Observation of collective friction forces due to spatial self-organization of atoms: from Rayleigh to Bragg scattering.
    Black AT; Chan HW; Vuletić V
    Phys Rev Lett; 2003 Nov; 91(20):203001. PubMed ID: 14683358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cavity-modified collective Rayleigh scattering of two atoms.
    Reimann R; Alt W; Kampschulte T; Macha T; Ratschbacher L; Thau N; Yoon S; Meschede D
    Phys Rev Lett; 2015 Jan; 114(2):023601. PubMed ID: 25635545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light interference from single atoms and their mirror images.
    Eschner J; Raab C; Schmidt-Kaler F; Blatt R
    Nature; 2001 Oct; 413(6855):495-8. PubMed ID: 11586352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cavity cooling of a single atom.
    Maunz P; Puppe T; Schuster I; Syassen N; Pinkse PW; Rempe G
    Nature; 2004 Mar; 428(6978):50-2. PubMed ID: 14999275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cavity nonlinear optics at low photon numbers from collective atomic motion.
    Gupta S; Moore KL; Murch KW; Stamper-Kurn DM
    Phys Rev Lett; 2007 Nov; 99(21):213601. PubMed ID: 18233217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Collective cooling and self-organization of atoms in a cavity.
    Domokos P; Ritsch H
    Phys Rev Lett; 2002 Dec; 89(25):253003. PubMed ID: 12484881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Observation of Collective Superstrong Coupling of Cold Atoms to a 30-m Long Optical Resonator.
    Johnson A; Blaha M; Ulanov AE; Rauschenbeutel A; Schneeweiss P; Volz J
    Phys Rev Lett; 2019 Dec; 123(24):243602. PubMed ID: 31922835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Collective state measurement of mesoscopic ensembles with single-atom resolution.
    Zhang H; McConnell R; Cuk S; Lin Q; Schleier-Smith MH; Leroux ID; Vuletić V
    Phys Rev Lett; 2012 Sep; 109(13):133603. PubMed ID: 23030090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sympathetic cooling with two atomic species in an optical trap.
    Mudrich M; Kraft S; Singer K; Grimm R; Mosk A; Weidemüller M
    Phys Rev Lett; 2002 Jun; 88(25 Pt 1):253001. PubMed ID: 12097086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Observation of free-space single-atom matter wave interference.
    Parazzoli LP; Hankin AM; Biedermann GW
    Phys Rev Lett; 2012 Dec; 109(23):230401. PubMed ID: 23368168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The atom-cavity microscope: single atoms bound in orbit by single photons.
    Hood CJ; Lynn TW; Doherty AC; Parkins AS; Kimble HJ
    Science; 2000 Feb; 287(5457):1447-53. PubMed ID: 10688786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anomalous Doppler-effect and polariton-mediated cooling of two-level atoms.
    Domokos P; Vukics A; Ritsch H
    Phys Rev Lett; 2004 Mar; 92(10):103601. PubMed ID: 15089207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip.
    Colombe Y; Steinmetz T; Dubois G; Linke F; Hunger D; Reichel J
    Nature; 2007 Nov; 450(7167):272-6. PubMed ID: 17994094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ground-state cooling of a single atom at the center of an optical cavity.
    Reiserer A; Nölleke C; Ritter S; Rempe G
    Phys Rev Lett; 2013 May; 110(22):223003. PubMed ID: 23767719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superradiant rayleigh scattering and collective atomic recoil lasing in a ring cavity.
    Slama S; Bux S; Krenz G; Zimmermann C; Courteille PW
    Phys Rev Lett; 2007 Feb; 98(5):053603. PubMed ID: 17358857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trapping an atom with single photons.
    Pinkse PW; Fischer T; Maunz P; Rempe G
    Nature; 2000 Mar; 404(6776):365-8. PubMed ID: 10746717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cavity cooling below the recoil limit.
    Wolke M; Klinner J; Keßler H; Hemmerich A
    Science; 2012 Jul; 337(6090):75-8. PubMed ID: 22767925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trapping ultracold dysprosium: a highly magnetic gas for dipolar physics.
    Lu M; Youn SH; Lev BL
    Phys Rev Lett; 2010 Feb; 104(6):063001. PubMed ID: 20366817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Doppler cooling and trapping on forbidden transitions.
    Binnewies T; Wilpers G; Sterr U; Riehle F; Helmcke J; Mehlstäubler TE; Rasel EM; Ertmer W
    Phys Rev Lett; 2001 Sep; 87(12):123002. PubMed ID: 11580503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.