These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 12633376)

  • 1. Dispersive phonon linewidths: the E2 phonons of ZnO.
    Serrano J; Manjón FJ; Romero AH; Widulle F; Lauck R; Cardona M
    Phys Rev Lett; 2003 Feb; 90(5):055510. PubMed ID: 12633376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isotope-disorder-induced line broadening of phonons in the Raman spectra of SiC.
    Rohmfeld S; Hundhausen M; Ley L; Schulze N; Pensl G
    Phys Rev Lett; 2001 Jan; 86(5):826-9. PubMed ID: 11177950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phonon anharmonicities in graphite and graphene.
    Bonini N; Lazzeri M; Marzari N; Mauri F
    Phys Rev Lett; 2007 Oct; 99(17):176802. PubMed ID: 17995357
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isotopic phonon effects in β-rhombohedral boron--non-statistical isotope distribution.
    Werheit H; Filipov V; Kuhlmann U; Schwarz U; Armbrüster M; Antadze M
    J Phys Condens Matter; 2012 May; 24(17):175401. PubMed ID: 22469660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Low-temperature-dependent characteristics of Raman scattering in N-type 4H-SiC].
    Miao RX; Zhao P; Liu WH; Tang XY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Jan; 34(1):108-10. PubMed ID: 24783543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peculiar anharmonicity of Ruddlesden Popper metal halides: temperature-dependent phonon dephasing.
    Rojas-Gatjens E; Silva-Acuña C; Kandada ARS
    Mater Horiz; 2022 Jan; 9(1):492-499. PubMed ID: 34904992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of anomalous phonon dispersion of CaFe2As2 single crystals using inelastic neutron scattering.
    Mittal R; Pintschovius L; Lamago D; Heid R; Bohnen KP; Reznik D; Chaplot SL; Su Y; Kumar N; Dhar SK; Thamizhavel A; Brueckel T
    Phys Rev Lett; 2009 May; 102(21):217001. PubMed ID: 19519128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isotopic Disorder: The Prevailing Mechanism in Limiting the Phonon Lifetime in Hexagonal BN.
    Cuscó R; Edgar JH; Liu S; Li J; Artús L
    Phys Rev Lett; 2020 Apr; 124(16):167402. PubMed ID: 32383900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decay processes of long-lived phonons in 6H-SiC.
    Pshenay-Severin DA; Adamov RB; Vinnichenko MY; Moldavskaya MD; Shalygin VA
    J Phys Condens Matter; 2023 Mar; 35(17):. PubMed ID: 36764000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phonon Anharmonicity in Bulk
    Joshi J; Stone I; Beams R; Krylyuk S; Kalish I; Davydov A; Vora P
    Appl Phys Lett; 2016; 109():. PubMed ID: 33132399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phonon anharmonicity-induced decoherence slowing down in exciton-phonon systems.
    Pouthier V
    J Phys Condens Matter; 2010 Jun; 22(25):255601. PubMed ID: 21393804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phonon properties of CoSb2 single crystals.
    Lazarević N; Radonjić MM; Hu R; Tanasković D; Petrovic C; Popović ZV
    J Phys Condens Matter; 2012 Apr; 24(13):135402. PubMed ID: 22406874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Raman Linewidth Contributions from Four-Phonon and Electron-Phonon Interactions in Graphene.
    Han Z; Yang X; Sullivan SE; Feng T; Shi L; Li W; Ruan X
    Phys Rev Lett; 2022 Jan; 128(4):045901. PubMed ID: 35148139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurements of the population lifetime of D band and G' band phonons in single-walled carbon nanotubes.
    Nesbitt JM; Smith DC
    Nano Lett; 2013 Feb; 13(2):416-22. PubMed ID: 23297761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low frequency Raman scattering from acoustic phonons confined in ZnO nanoparticles.
    Yadav HK; Gupta V; Sreenivas K; Singh SP; Sundarakannan B; Katiyar RS
    Phys Rev Lett; 2006 Aug; 97(8):085502. PubMed ID: 17026314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coherent optical phonons of ZnO under near resonant photoexcitation.
    Ishioka K; Petek H; Kaydashev VE; Kaidashev EM; Misochko OV
    J Phys Condens Matter; 2010 Nov; 22(46):465803. PubMed ID: 21403377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coherent optical phonon oscillation and possible electronic softening in WTe2 crystals.
    He B; Zhang C; Zhu W; Li Y; Liu S; Zhu X; Wu X; Wang X; Wen HH; Xiao M
    Sci Rep; 2016 Jul; 6():30487. PubMed ID: 27457385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anharmonic Origin of the Giant Thermal Expansion of NaBr.
    Shen Y; Saunders CN; Bernal CM; Abernathy DL; Manley ME; Fultz B
    Phys Rev Lett; 2020 Aug; 125(8):085504. PubMed ID: 32909782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beyond Eliashberg superconductivity in MgB2: anharmonicity, two-phonon scattering, and multiple gaps.
    Liu AY; Mazin II; Kortus J
    Phys Rev Lett; 2001 Aug; 87(8):087005. PubMed ID: 11497975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phonon confinement and particle size effect on the low-frequency Raman mode of aurivillius phase Bi
    Amaechi IC; Ruediger A; Pignolet A
    RSC Adv; 2023 Feb; 13(8):4917-4923. PubMed ID: 36762079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.