These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 12633396)

  • 1. Theoretical study of the optical manipulation of semiconductor nanoparticles under an excitonic resonance condition.
    Iida T; Ishihara H
    Phys Rev Lett; 2003 Feb; 90(5):057403. PubMed ID: 12633396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of the mechanical interaction between an electromagnetic field and a nanoscopic thin film near electronic resonance.
    Iida T; Ishihara H
    Opt Lett; 2002 May; 27(9):754-6. PubMed ID: 18007922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comment on "Theoretical study of the optical manipulation of semiconductor nanoparticles under an excitonic resonance condition".
    Pelton M
    Phys Rev Lett; 2004 Feb; 92(8):089701; author reply 089702. PubMed ID: 14995824
    [No Abstract]   [Full Text] [Related]  

  • 4. Optical two-dimensional fourier transform spectroscopy of semiconductor quantum wells.
    Cundiff ST; Zhang T; Bristow AD; Karaiskaj D; Dai X
    Acc Chem Res; 2009 Sep; 42(9):1423-32. PubMed ID: 19555068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resonance optical manipulation of nano-objects based on nonlinear optical response.
    Kudo T; Ishihara H
    Phys Chem Chem Phys; 2013 Sep; 15(35):14595-610. PubMed ID: 23907601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. State-resolved manipulations of optical gain in semiconductor quantum dots: Size universality, gain tailoring, and surface effects.
    Cooney RR; Sewall SL; Sagar DM; Kambhampati P
    J Chem Phys; 2009 Oct; 131(16):164706. PubMed ID: 19894969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient control of coulomb enhanced second harmonic generation from excitonic transitions in quantum dot ensembles.
    Ramírez HY; Flórez J; Camacho ÁS
    Phys Chem Chem Phys; 2015 Oct; 17(37):23938-46. PubMed ID: 26313884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical analysis for transverse microbead trapping using 30 MHz focused ultrasound in ray acoustics regime.
    Lee J
    Ultrasonics; 2014 Jan; 54(1):11-9. PubMed ID: 23809757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasensitive size-selection of plasmonic nanoparticles by Fano interference optical force.
    Li Z; Zhang S; Tong L; Wang P; Dong B; Xu H
    ACS Nano; 2014 Jan; 8(1):701-8. PubMed ID: 24308824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect.
    Zhang W; Govorov AO; Bryant GW
    Phys Rev Lett; 2006 Oct; 97(14):146804. PubMed ID: 17155282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dependence of the absorption and optical surface plasmon scattering of MoS₂ nanoparticles on aspect ratio, size, and media.
    Yadgarov L; Choi CL; Sedova A; Cohen A; Rosentsveig R; Bar-Elli O; Oron D; Dai H; Tenne R
    ACS Nano; 2014 Apr; 8(4):3575-83. PubMed ID: 24669749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical trapping and manipulation of nanostructures.
    Maragò OM; Jones PH; Gucciardi PG; Volpe G; Ferrari AC
    Nat Nanotechnol; 2013 Nov; 8(11):807-19. PubMed ID: 24202536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical pressure and numerical simulation of optical forces.
    Hellesø OG
    Appl Opt; 2017 Apr; 56(12):3354-3358. PubMed ID: 28430257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Axial acoustic radiation force of progressive cylindrical diverging waves on a rigid and a soft cylinder immersed in an ideal compressible fluid.
    Mitri FG; Fellah ZE
    Ultrasonics; 2011 Jul; 51(5):523-6. PubMed ID: 21339000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical trapping and manipulation of nano-objects with an apertureless probe.
    Chaumet PC; Rahmani A; Nieto-Vesperinas M
    Phys Rev Lett; 2002 Mar; 88(12):123601. PubMed ID: 11909460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Faraday rotation enhancement of gold coated Fe2O3 nanoparticles: comparison of experiment and theory.
    Dani RK; Wang H; Bossmann SH; Wysin G; Chikan V
    J Chem Phys; 2011 Dec; 135(22):224502. PubMed ID: 22168698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Harnessing optical forces in integrated photonic circuits.
    Li M; Pernice WH; Xiong C; Baehr-Jones T; Hochberg M; Tang HX
    Nature; 2008 Nov; 456(7221):480-4. PubMed ID: 19037311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gaining control on optical force by the stimulated-emission resonance effect.
    Kudo T; Louis B; Sotome H; Chen JK; Ito S; Miyasaka H; Masuhara H; Hofkens J; Bresolí-Obach R
    Chem Sci; 2023 Sep; 14(37):10087-10095. PubMed ID: 37772121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.