These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 12633898)

  • 21. Three-dimensional vector analysis of the human vestibuloocular reflex in response to high-acceleration head rotations. I. Responses in normal subjects.
    Aw ST; Haslwanter T; Halmagyi GM; Curthoys IS; Yavor RA; Todd MJ
    J Neurophysiol; 1996 Dec; 76(6):4009-20. PubMed ID: 8985896
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effects of constraining vision and eye movements on whole-body coordination during standing turns.
    Robins RK; Hollands MA
    Exp Brain Res; 2017 Dec; 235(12):3593-3603. PubMed ID: 28884336
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of vision in maintaining heading direction: effects of changing gaze and optic flow on human gait.
    Schubert M; Bohner C; Berger W; Sprundel Mv; Duysens JE
    Exp Brain Res; 2003 May; 150(2):163-73. PubMed ID: 12669168
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differences in gaze anticipation for locomotion with and without vision.
    AuthiƩ CN; Hilt PM; N'Guyen S; Berthoz A; Bennequin D
    Front Hum Neurosci; 2015; 9():312. PubMed ID: 26106313
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Head orientation and trajectory of locomotion during jumping and walking in domestic chicks.
    Green PR
    Brain Behav Evol; 1998; 51(1):48-58. PubMed ID: 9435971
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Keep looking ahead? Re-direction of visual fixation does not always occur during an unpredictable obstacle avoidance task.
    Marigold DS; Weerdesteyn V; Patla AE; Duysens J
    Exp Brain Res; 2007 Jan; 176(1):32-42. PubMed ID: 16819646
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Children use different anticipatory control strategies than adults to circumvent an obstacle in the travel path.
    Vallis LA; McFadyen BJ
    Exp Brain Res; 2005 Nov; 167(1):119-27. PubMed ID: 16177831
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The brain weights body-based cues higher than vision when estimating walked distances.
    Campos JL; Byrne P; Sun HJ
    Eur J Neurosci; 2010 May; 31(10):1889-98. PubMed ID: 20584194
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multisensory control of a straight locomotor trajectory.
    Hanna M; Fung J; Lamontagne A
    J Vestib Res; 2017; 27(1):17-25. PubMed ID: 28387689
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optic flow drives human visuo-locomotor adaptation.
    Bruggeman H; Zosh W; Warren WH
    Curr Biol; 2007 Dec; 17(23):2035-40. PubMed ID: 18023350
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interactions between idiothetic cues and external landmarks in the control of place cells and head direction cells.
    Knierim JJ; Kudrimoti HS; McNaughton BL
    J Neurophysiol; 1998 Jul; 80(1):425-46. PubMed ID: 9658061
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optic-flow and egocentric-direction strategies in walking: central vs peripheral visual field.
    Turano KA; Yu D; Hao L; Hicks JC
    Vision Res; 2005 Nov; 45(25-26):3117-32. PubMed ID: 16084556
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Anticipatory detection of turning in humans for intuitive control of robotic mobility assistance.
    Farkhatdinov I; Roehri N; Burdet E
    Bioinspir Biomim; 2017 Sep; 12(5):055004. PubMed ID: 28948937
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Human locomotion through a multiple obstacle environment: strategy changes as a result of visual field limitation.
    Jansen SE; Toet A; Werkhoven PJ
    Exp Brain Res; 2011 Jul; 212(3):449-56. PubMed ID: 21687987
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Direct evidence for distance measurement via flexible stride integration in the fiddler crab.
    Walls ML; Layne JE
    Curr Biol; 2009 Jan; 19(1):25-9. PubMed ID: 19110426
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Understanding the contribution of binocular vision to the control of adaptive locomotion.
    Patla AE; Niechwiej E; Racco V; Goodale MA
    Exp Brain Res; 2002 Feb; 142(4):551-61. PubMed ID: 11845250
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recovery of the locomotor function after prolonged microgravity exposure. I. Head-trunk movement and locomotor equilibrium during various tasks.
    Courtine G; Pozzo T
    Exp Brain Res; 2004 Sep; 158(1):86-99. PubMed ID: 15164151
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Head roll stabilisation in the nocturnal bull ant Myrmecia pyriformis: implications for visual navigation.
    Raderschall CA; Narendra A; Zeil J
    J Exp Biol; 2016 May; 219(Pt 10):1449-57. PubMed ID: 26994172
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Vestibular compensation and orientation during locomotion.
    Raphan T; Imai T; Moore ST; Cohen B
    Ann N Y Acad Sci; 2001 Oct; 942():128-38. PubMed ID: 11710455
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A faithful internal representation of walking movements in the Drosophila visual system.
    Fujiwara T; Cruz TL; Bohnslav JP; Chiappe ME
    Nat Neurosci; 2017 Jan; 20(1):72-81. PubMed ID: 27798632
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.