These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 12634041)

  • 21. Higher-order repeat structure in alpha satellite DNA occurs in New World monkeys and is not confined to hominoids.
    Sujiwattanarat P; Thapana W; Srikulnath K; Hirai Y; Hirai H; Koga A
    Sci Rep; 2015 May; 5():10315. PubMed ID: 25974220
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Global Repeat Map (GRM): Advantageous Method for Discovery of Largest Higher-Order Repeats (HORs) in Neuroblastoma Breakpoint Family (NBPF) Genes, in Hornerin Exon and in Chromosome 21 Centromere.
    Paar V; Vlahović I; Rosandić M; Glunčić M
    Prog Mol Subcell Biol; 2021; 60():203-234. PubMed ID: 34386877
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Large tandem, higher order repeats and regularly dispersed repeat units contribute substantially to divergence between human and chimpanzee Y chromosomes.
    Paar V; Glunčić M; Basar I; Rosandić M; Paar P; Cvitković M
    J Mol Evol; 2011 Jan; 72(1):34-55. PubMed ID: 21103868
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The time is ripe to investigate human centromeres by long-read sequencing†.
    Suzuki Y; Morishita S
    DNA Res; 2021 Oct; 28(6):. PubMed ID: 34609504
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Organization of the variant domains of alpha satellite DNA on human chromosome 21.
    Marçais B; Laurent AM; Charlieu JP; Roizès G
    J Mol Evol; 1993 Aug; 37(2):171-8. PubMed ID: 8411206
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A homologous subfamily of satellite III DNA on human chromosomes 14 and 22.
    Choo KH; Earle E; McQuillan C
    Nucleic Acids Res; 1990 Oct; 18(19):5641-8. PubMed ID: 2216757
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nucleotide sequence heterogeneity of alpha satellite repetitive DNA: a survey of alphoid sequences from different human chromosomes.
    Waye JS; Willard HF
    Nucleic Acids Res; 1987 Sep; 15(18):7549-69. PubMed ID: 3658703
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Satellite DNA junctions identify the potential origin of new repetitive elements in the beetle Tribolium madens.
    Mravinac B; Plohl M
    Gene; 2007 Jun; 394(1-2):45-52. PubMed ID: 17379457
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A chromosome 13-specific human satellite I DNA subfamily with minor presence on chromosome 21: further studies on Robertsonian translocations.
    Kalitsis P; Earle E; Vissel B; Shaffer LG; Choo KH
    Genomics; 1993 Apr; 16(1):104-12. PubMed ID: 8486347
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Unequal cross-over is involved in human alpha satellite DNA rearrangements on a border of the satellite domain.
    Mashkova T; Oparina N; Alexandrov I; Zinovieva O; Marusina A; Yurov Y; Lacroix MH; Kisselev L
    FEBS Lett; 1998 Dec; 441(3):451-7. PubMed ID: 9891989
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A new family of satellite DNA sequences as a major component of centromeric heterochromatin in owls (Strigiformes).
    Yamada K; Nishida-Umehara C; Matsuda Y
    Chromosoma; 2004 Mar; 112(6):277-87. PubMed ID: 14997323
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interhomologue sequence variation of alpha satellite DNA from human chromosome 17: evidence for concerted evolution along haplotypic lineages.
    Warburton PE; Willard HF
    J Mol Evol; 1995 Dec; 41(6):1006-15. PubMed ID: 8587099
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of alphoid higher order repeats (HORs) in the centromere folding.
    Rosandić M; Gluncić M; Paar V; Basar I
    J Theor Biol; 2008 Oct; 254(3):555-60. PubMed ID: 18625244
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular analysis of a deletion polymorphism in alpha satellite of human chromosome 17: evidence for homologous unequal crossing-over and subsequent fixation.
    Waye JS; Willard HF
    Nucleic Acids Res; 1986 Sep; 14(17):6915-27. PubMed ID: 3763396
    [TBL] [Abstract][Full Text] [Related]  

  • 35. PCR amplification of tandemly repeated DNA: analysis of intra- and interchromosomal sequence variation and homologous unequal crossing-over in human alpha satellite DNA.
    Warburton PE; Willard HF
    Nucleic Acids Res; 1992 Nov; 20(22):6033-42. PubMed ID: 1461735
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cloning and characterization of a highly conserved satellite DNA from the mollusc Mytilus edulis.
    Ruiz-Lara S; Prats E; Sainz J; Cornudella L
    Gene; 1992 Aug; 117(2):237-42. PubMed ID: 1639270
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An algorithmic analysis of the role of unequal crossover in alpha-satellite DNA evolution.
    Alkan C; Bailey JA; Eichler EE; Sahinalp SC; Tuzun E
    Genome Inform; 2002; 13():93-102. PubMed ID: 14571378
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Physical map of the centromeric region of human chromosome 7: relationship between two distinct alpha satellite arrays.
    Wevrick R; Willard HF
    Nucleic Acids Res; 1991 May; 19(9):2295-301. PubMed ID: 2041770
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Classification and monomer-by-monomer annotation dataset of suprachromosomal family 1 alpha satellite higher-order repeats in hg38 human genome assembly.
    Uralsky LI; Shepelev VA; Alexandrov AA; Yurov YB; Rogaev EI; Alexandrov IA
    Data Brief; 2019 Jun; 24():103708. PubMed ID: 30989093
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Segment substitutions in alpha satellite DNA. Unusual structure of human chromosome 3-specific alpha satellite repeat unit.
    Alexandrov IA; Mashkova TD; Romanova LY; Yurov YB; Kisselev LL
    J Mol Biol; 1993 May; 231(2):516-20. PubMed ID: 8510162
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.