These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 12634074)

  • 1. Chlamydia pneumoniae survival in macrophages is regulated by free Ca2+ dependent reactive nitrogen and oxygen species.
    Azenabor AA; Chaudhry AU
    J Infect; 2003 Feb; 46(2):120-8. PubMed ID: 12634074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effective macrophage redox defense against Chlamydia pneumoniae depends on L-type Ca2+ channel activation.
    Azenabor AA; Chaudhry AU
    Med Microbiol Immunol; 2003 May; 192(2):99-106. PubMed ID: 12736823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elicitation of reactive oxygen species in Chlamydia pneumoniae-stimulated macrophages: a Ca2+-dependent process involving simultaneous activation of NADPH oxidase and cytochrome oxidase genes.
    Azenabor AA; Yang S; Job G; Adedokun OO
    Med Microbiol Immunol; 2005 Jan; 194(1-2):91-103. PubMed ID: 15197588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macrophage antioxidant enzymes regulate Chlamydia pneumoniae chronicity: evidence of the effect of redox balance on host-pathogen relationship.
    Azenabor AA; Muili K; Akoachere JF; Chaudhry A
    Immunobiology; 2006; 211(5):325-39. PubMed ID: 16716802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chlamydia pneumoniae induces nitric oxide synthase and lipoxygenase-dependent production of reactive oxygen species in platelets. Effects on oxidation of low density lipoproteins.
    Kälvegren H; Bylin H; Leanderson P; Richter A; Grenegård M; Bengtsson T
    Thromb Haemost; 2005 Aug; 94(2):327-35. PubMed ID: 16113822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chlamydia muridarum infection of macrophages elicits bactericidal nitric oxide production via reactive oxygen species and cathepsin B.
    Rajaram K; Nelson DE
    Infect Immun; 2015 Aug; 83(8):3164-75. PubMed ID: 26015483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Macrophage L-type Ca2+ channel antagonists alter Chlamydia pneumoniae MOMP and HSP-60 mRNA gene expression, and improve antibiotic susceptibility.
    Azenabor AA; Chaudhry AU; Yang S
    Immunobiology; 2003; 207(4):237-45. PubMed ID: 12952346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidative processes in human promonocytic cells (THP-1) after differentiation into macrophages by incubation with Chlamydia pneumoniae extracts.
    Mouithys-Mickalad A; Deby-Dupont G; Nys M; Lamy M; Deby C
    Biochem Biophys Res Commun; 2001 Sep; 287(3):781-8. PubMed ID: 11563864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Induction of lipoprotein lipase gene expression in Chlamydia pneumoniae-infected macrophages is dependent on Ca2+ signaling events.
    Azenabor AA; Job G; Yang S
    Biol Chem; 2004 Jan; 385(1):67-74. PubMed ID: 14977048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The resistance of human monocyte-derived macrophages to Chlamydia pneumoniae infection is enhanced by interferon-gamma.
    Airenne S; Surcel HM; Bloigu A; Laitinen K; Saikku P; Laurila A
    APMIS; 2000 Feb; 108(2):139-44. PubMed ID: 10737459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative roles of free fatty acids with reactive nitrogen intermediates and reactive oxygen intermediates in expression of the anti-microbial activity of macrophages against Mycobacterium tuberculosis.
    Akaki T; Tomioka H; Shimizu T; Dekio S; Sato K
    Clin Exp Immunol; 2000 Aug; 121(2):302-10. PubMed ID: 10931146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chlamydia pneumoniae induces T cell apoptosis through glutathione redox imbalance and secretion of TNF-alpha.
    Sessa R; Di Pietro M; Schiavoni G; Macone A; Maras B; Fontana M; Zagaglia C; Nicoletti M; Del Piano M; Morrone S
    Int J Immunopathol Pharmacol; 2009; 22(3):659-68. PubMed ID: 19822082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing effect of oxygen radical scavengers on murine macrophage anticryptococcal activity through production of nitric oxide.
    Tohyama M; Kawakami K; Futenma M; Saito A
    Clin Exp Immunol; 1996 Mar; 103(3):436-41. PubMed ID: 8608643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Free intracellular Ca2+ regulates bacterial lipopolysaccharide induction of iNOS in human macrophages.
    Azenabor AA; Kennedy P; York J
    Immunobiology; 2009; 214(2):143-52. PubMed ID: 19167993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amphiphysin IIm is required for survival of Chlamydia pneumoniae in macrophages.
    Gold ES; Simmons RM; Petersen TW; Campbell LA; Kuo CC; Aderem A
    J Exp Med; 2004 Sep; 200(5):581-6. PubMed ID: 15337791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time amperometric analysis of reactive oxygen and nitrogen species released by single immunostimulated macrophages.
    Amatore C; Arbault S; Bouton C; Drapier JC; Ghandour H; Koh AC
    Chembiochem; 2008 Jun; 9(9):1472-80. PubMed ID: 18491327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Macrophage-induced inhibition of nitric oxide production in primary rat hepatocyte cultures via prostaglandin E2 release.
    Griffon B; Cillard J; Chevanne M; Morel I; Cillard P; Sergent O
    Hepatology; 1998 Nov; 28(5):1300-8. PubMed ID: 9794915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of nitric oxide on the growth of Chlamydophila pneumoniae.
    Carratelli CR; Rizzo A; Paolillo R; Catania MR; Catalanotti P; Rossano F
    Can J Microbiol; 2005 Nov; 51(11):941-7. PubMed ID: 16333333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chlamydia trachomatis evokes a relative anti-inflammatory response in a free Ca2+ dependent manner in human macrophages.
    Azenabor AA; York J
    Comp Immunol Microbiol Infect Dis; 2010 Dec; 33(6):513-28. PubMed ID: 19782401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chlamydia pneumoniae induces a pro-inflammatory phenotype in murine vascular smooth muscle cells independently of elevating reactive oxygen species.
    Rivera J; Walduck AK; Strugnell RA; Sobey CG; Drummond GR
    Clin Exp Pharmacol Physiol; 2012 Mar; 39(3):218-26. PubMed ID: 22211630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.