BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 12634926)

  • 1. Phosphocreatine as a determinant of K(ATP) channel activity in pancreatic beta-cells.
    Krippeit-Drews P; Bäcker M; Düfer M; Drews G
    Pflugers Arch; 2003 Feb; 445(5):556-62. PubMed ID: 12634926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methyl pyruvate stimulates pancreatic beta-cells by a direct effect on KATP channels, and not as a mitochondrial substrate.
    Düfer M; Krippeit-Drews P; Buntinas L; Siemen D; Drews G
    Biochem J; 2002 Dec; 368(Pt 3):817-25. PubMed ID: 12350226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iptakalim, a vascular ATP-sensitive potassium (KATP) channel opener, closes rat pancreatic beta-cell KATP channels and increases insulin release.
    Misaki N; Mao X; Lin YF; Suga S; Li GH; Liu Q; Chang Y; Wang H; Wakui M; Wu J
    J Pharmacol Exp Ther; 2007 Aug; 322(2):871-8. PubMed ID: 17522344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adenine nucleotide regulation in pancreatic beta-cells: modeling of ATP/ADP-Ca2+ interactions.
    Fridlyand LE; Ma L; Philipson LH
    Am J Physiol Endocrinol Metab; 2005 Nov; 289(5):E839-48. PubMed ID: 15985450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variations in ATP-sensitive K+ channel activity provide evidence for inherent metabolic oscillations in pancreatic beta-cells.
    Dryselius S; Lund PE; Gylfe E; Hellman B
    Biochem Biophys Res Commun; 1994 Nov; 205(1):880-5. PubMed ID: 7999126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of ATP-sensitive K+ channels by taurine through a benzamido-binding site on sulfonylurea receptor 1.
    Park EJ; Bae JH; Kim SY; Lim JG; Baek WK; Kwon TK; Suh SI; Park JW; Lee IK; Ashcroft FM; Song DK
    Biochem Pharmacol; 2004 Mar; 67(6):1089-96. PubMed ID: 15006545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Delayed-rectifier (KV2.1) regulation of pancreatic beta-cell calcium responses to glucose: inhibitor specificity and modeling.
    Tamarina NA; Kuznetsov A; Fridlyand LE; Philipson LH
    Am J Physiol Endocrinol Metab; 2005 Oct; 289(4):E578-85. PubMed ID: 16014354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic and ionic coupling factors in amino acid-stimulated insulin release in pancreatic beta-HC9 cells.
    Doliba NM; Wehrli SL; Vatamaniuk MZ; Qin W; Buettger CW; Collins HW; Matschinsky FM
    Am J Physiol Endocrinol Metab; 2007 Jun; 292(6):E1507-19. PubMed ID: 17264232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. KATP-channels in beta-cells in tissue slices are directly modulated by millimolar ATP.
    Speier S; Yang SB; Sroka K; Rose T; Rupnik M
    Mol Cell Endocrinol; 2005 Jan; 230(1-2):51-8. PubMed ID: 15664451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insulin activates ATP-sensitive K(+) channels in pancreatic beta-cells through a phosphatidylinositol 3-kinase-dependent pathway.
    Khan FA; Goforth PB; Zhang M; Satin LS
    Diabetes; 2001 Oct; 50(10):2192-8. PubMed ID: 11574397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Necessity of newly synthesized ATP by creatine kinase for contraction of permeabilized longitudinal muscle preparations of rat proximal colon.
    Takeuchi T; Fujita A; Ishii T; Nishio H; Hata F
    J Pharmacol Exp Ther; 1995 Oct; 275(1):429-34. PubMed ID: 7562581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A store-operated mechanism determines the activity of the electrically excitable glucagon-secreting pancreatic alpha-cell.
    Liu YJ; Vieira E; Gylfe E
    Cell Calcium; 2004 Apr; 35(4):357-65. PubMed ID: 15036952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two sites for adenine-nucleotide regulation of ATP-sensitive potassium channels in mouse pancreatic beta-cells and HIT cells.
    Hopkins WF; Fatherazi S; Peter-Riesch B; Corkey BE; Cook DL
    J Membr Biol; 1992 Sep; 129(3):287-95. PubMed ID: 1433280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glucose and hippocampal neuronal excitability: role of ATP-sensitive potassium channels.
    Huang CW; Huang CC; Cheng JT; Tsai JJ; Wu SN
    J Neurosci Res; 2007 May; 85(7):1468-77. PubMed ID: 17410601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mathematical simulation of membrane processes and metabolic fluxes of the pancreatic beta-cell.
    Diederichs F
    Bull Math Biol; 2006 Oct; 68(7):1779-818. PubMed ID: 16832733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of glucose metabolism and opening of K(ATP) channels in pancreatic beta-cells by NO.
    Tsuura Y; Ishida H; Seino Y
    Jpn J Physiol; 1997; 47 Suppl 1():S12. PubMed ID: 9266310
    [No Abstract]   [Full Text] [Related]  

  • 17. Glucose-dependent and -independent electrical activity in islets of Langerhans of Psammomys obesus, an animal model of nutritionally induced obesity and diabetes.
    Zimliki CL; Chenault VM; Mears D
    Gen Comp Endocrinol; 2009 Apr; 161(2):193-201. PubMed ID: 19167400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro K+-effect on ATP and phosphocreatine levels and on Na+ K+-atpase activity of mouse brain cells.
    Kovárů H; Lodin Z
    Physiol Bohemoslov; 1980; 29(2):107-16. PubMed ID: 6247730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An adenylate kinase is involved in KATP channel regulation of mouse pancreatic beta cells.
    Schulze DU; Düfer M; Wieringa B; Krippeit-Drews P; Drews G
    Diabetologia; 2007 Oct; 50(10):2126-34. PubMed ID: 17704905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feedback control of the ATP-sensitive K(+) current by cytosolic Ca(2+) contributes to oscillations of the membrane potential in pancreatic beta-cells.
    Rolland JF; Henquin JC; Gilon P
    Diabetes; 2002 Feb; 51(2):376-84. PubMed ID: 11812744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.