These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 12635151)

  • 21. Electrospun Nanofibrous P(DLLA-CL) Balloons as Calcium Phosphate Cement Filled Containers for Bone Repair: in Vitro and in Vivo Studies.
    Liu X; Wei D; Zhong J; Ma M; Zhou J; Peng X; Ye Y; Sun G; He D
    ACS Appl Mater Interfaces; 2015 Aug; 7(33):18540-52. PubMed ID: 26258872
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bone inductive properties of rhBMP-2 loaded porous calcium phosphate cement implants inserted at an ectopic site in rabbits.
    Kroese-Deutman HC; Ruhé PQ; Spauwen PH; Jansen JA
    Biomaterials; 2005 Apr; 26(10):1131-8. PubMed ID: 15451632
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Use of injectable calcium-phosphate cement for the fixation of titanium implants: an experimental study in goats.
    Ooms EM; Wolke JG; van der Waerden JP; Jansen JA
    J Biomed Mater Res B Appl Biomater; 2003 Jul; 66(1):447-56. PubMed ID: 12808607
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bone regeneration capacity of magnesium phosphate cements in a large animal model.
    Kanter B; Vikman A; Brückner T; Schamel M; Gbureck U; Ignatius A
    Acta Biomater; 2018 Mar; 69():352-361. PubMed ID: 29409867
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tissue responses of calcium phosphate cement: a study in dogs.
    Yuan H; Li Y; de Bruijn JD; de Groot K; Zhang X
    Biomaterials; 2000 Jun; 21(12):1283-90. PubMed ID: 10811310
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of an orthotopically implanted calcium phosphate cement containing gelatin microparticles.
    Link DP; van den Dolder J; van den Beucken JJ; Habraken W; Soede A; Boerman OC; Mikos AG; Jansen JA
    J Biomed Mater Res A; 2009 Aug; 90(2):372-9. PubMed ID: 18521889
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The osteoinductivity of silicate-substituted calcium phosphate.
    Coathup MJ; Samizadeh S; Fang YS; Buckland T; Hing KA; Blunn GW
    J Bone Joint Surg Am; 2011 Dec; 93(23):2219-26. PubMed ID: 22159858
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A 1-year study of osteoinduction in hydroxyapatite-derived biomaterials in an adult sheep model: part I.
    Gosain AK; Song L; Riordan P; Amarante MT; Nagy PG; Wilson CR; Toth JM; Ricci JL
    Plast Reconstr Surg; 2002 Feb; 109(2):619-30. PubMed ID: 11818845
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanical evaluation of implanted calcium phosphate cement incorporated with PLGA microparticles.
    Link DP; van den Dolder J; Jurgens WJ; Wolke JG; Jansen JA
    Biomaterials; 2006 Oct; 27(28):4941-7. PubMed ID: 16759694
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In vivo testing of nanoparticle-treated TTCP/DCPA-based ceramic surfaces.
    Chen WC; Ju CP; Tien YC; Lin JH
    Acta Biomater; 2009 Jun; 5(5):1767-74. PubMed ID: 19144582
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of surfactant molecules as air-entraining agent for bone cement macroporosity.
    Sarda S; Nilsson M; Balcells M; Fernández E
    J Biomed Mater Res A; 2003 May; 65(2):215-21. PubMed ID: 12734815
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Production of in-situ macropores in an injectable calcium phosphate cement by introduction of cetyltrimethyl ammonium bromide.
    Wang X; Ye J; Li X; Dong H
    J Mater Sci Mater Med; 2008 Oct; 19(10):3221-5. PubMed ID: 18452031
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Morphology and mechanical behavior of TTCP-derived calcium phosphate cement subcutaneously implanted in rats.
    Tsai CH; Ju CP; Chern Lin JH
    J Mater Sci Mater Med; 2008 Jun; 19(6):2407-15. PubMed ID: 18185915
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phosphoserine-modified calcium phosphate cements: bioresorption and substitution.
    Offer L; Veigel B; Pavlidis T; Heiss C; Gelinsky M; Reinstorf A; Wenisch S; Lips KS; Schnettler R
    J Tissue Eng Regen Med; 2011 Jan; 5(1):11-9. PubMed ID: 20603870
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Resorption of, and bone formation from, new beta-tricalcium phosphate-monocalcium phosphate cements: an in vivo study.
    Ohura K; Bohner M; Hardouin P; Lemaître J; Pasquier G; Flautre B
    J Biomed Mater Res; 1996 Feb; 30(2):193-200. PubMed ID: 9019484
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Three different strategies to obtain porous calcium phosphate cements: comparison of performance in a rat skull bone augmentation model.
    Klijn RJ; van den Beucken JJ; Félix Lanao RP; Veldhuis G; Leeuwenburgh SC; Wolke JG; Meijer GJ; Jansen JA
    Tissue Eng Part A; 2012 Jun; 18(11-12):1171-82. PubMed ID: 22292519
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Introduction of gelatin microspheres into an injectable calcium phosphate cement.
    Habraken WJ; de Jonge LT; Wolke JG; Yubao L; Mikos AG; Jansen JA
    J Biomed Mater Res A; 2008 Dec; 87(3):643-55. PubMed ID: 18189298
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biocompatibility and resorption of a brushite calcium phosphate cement.
    Theiss F; Apelt D; Brand B; Kutter A; Zlinszky K; Bohner M; Matter S; Frei C; Auer JA; von Rechenberg B
    Biomaterials; 2005 Jul; 26(21):4383-94. PubMed ID: 15701367
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Incorporation of biodegradable electrospun fibers into calcium phosphate cement for bone regeneration.
    Zuo Y; Yang F; Wolke JG; Li Y; Jansen JA
    Acta Biomater; 2010 Apr; 6(4):1238-47. PubMed ID: 19861181
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bone and soft connective tissue response to porous acrylic implants. A histokinetic study.
    van Mullem PJ; de Wijn JR
    J Craniomaxillofac Surg; 1988 Apr; 16(3):99-109. PubMed ID: 3164321
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.