These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 12635732)

  • 1. Modeling microbial growth within food safety risk assessments.
    Ross T; McMeekin TA
    Risk Anal; 2003 Feb; 23(1):179-97. PubMed ID: 12635732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predictive modelling of the growth and survival of Listeria in fishery products.
    Ross T; Dalgaard P; Tienungoon S
    Int J Food Microbiol; 2000 Dec; 62(3):231-45. PubMed ID: 11156267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Considering the complexity of microbial community dynamics in food safety risk assessment.
    Powell M; Schlosser W; Ebel E
    Int J Food Microbiol; 2004 Jan; 90(2):171-9. PubMed ID: 14698098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling microbial growth and dynamics.
    Esser DS; Leveau JH; Meyer KM
    Appl Microbiol Biotechnol; 2015 Nov; 99(21):8831-46. PubMed ID: 26298697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards a novel class of predictive microbial growth models.
    Van Impe JF; Poschet F; Geeraerd AH; Vereecken KM
    Int J Food Microbiol; 2005 Apr; 100(1-3):97-105. PubMed ID: 15854696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting mycotoxins in foods: a review.
    Garcia D; Ramos AJ; Sanchis V; Marín S
    Food Microbiol; 2009 Dec; 26(8):757-69. PubMed ID: 19835759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of chemicals on the microbial evolution in foods.
    Devlieghere F; Francois K; Vereecken KM; Geeraerd AH; Van Impe JF; Debevere J
    J Food Prot; 2004 Sep; 67(9):1977-90. PubMed ID: 15453593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 'MicroHibro': A software tool for predictive microbiology and microbial risk assessment in foods.
    González SC; Possas A; Carrasco E; Valero A; Bolívar A; Posada-Izquierdo GD; García-Gimeno RM; Zurera G; Pérez-Rodríguez F
    Int J Food Microbiol; 2019 Feb; 290():226-236. PubMed ID: 30368088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial modeling in foods.
    Whiting RC
    Crit Rev Food Sci Nutr; 1995 Nov; 35(6):464-94. PubMed ID: 8777014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predictive microbiology: providing a knowledge-based framework for change management.
    McMeekin TA; Ross T
    Int J Food Microbiol; 2002 Sep; 78(1-2):133-53. PubMed ID: 12222630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative microbiological risk assessment in food industry: Theory and practical application.
    Membré JM; Boué G
    Food Res Int; 2018 Apr; 106():1132-1139. PubMed ID: 29579908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A quasi-chemical model for the growth and death of microorganisms in foods by non-thermal and high-pressure processing.
    Doona CJ; Feeherry FE; Ross EW
    Int J Food Microbiol; 2005 Apr; 100(1-3):21-32. PubMed ID: 15854689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling microbial growth in structured foods: towards a unified approach.
    Wilson PD; Brocklehurst TF; Arino S; Thuault D; Jakobsen M; Lange M; Farkas J; Wimpenny JW; Van Impe JF
    Int J Food Microbiol; 2002 Mar; 73(2-3):275-89. PubMed ID: 11934035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predictive microbiology models vs. modeling microbial growth within Listeria monocytogenes risk assessment: what parameters matter and why.
    Pouillot R; Lubran MB
    Food Microbiol; 2011 Jun; 28(4):720-6. PubMed ID: 21511132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative microbiology: a basis for food safety.
    McMeekin TA; Brown J; Krist K; Miles D; Neumeyer K; Nichols DS; Olley J; Presser K; Ratkowsky DA; Ross T; Salter M; Soontranon S
    Emerg Infect Dis; 1997; 3(4):541-9. PubMed ID: 9366608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predictive Modeling of Microbial Behavior in Food.
    Stavropoulou E; Bezirtzoglou E
    Foods; 2019 Dec; 8(12):. PubMed ID: 31817788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Challenges in risk assessment and predictive microbiology of foodborne spore-forming bacteria.
    Augustin JC
    Food Microbiol; 2011 Apr; 28(2):209-13. PubMed ID: 21315975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling the growth, survival and death of microorganisms in foods: the UK food micromodel approach.
    McClure PJ; Blackburn CW; Cole MB; Curtis PS; Jones JE; Legan JD; Ogden ID; Peck MW; Roberts TA; Sutherland JP
    Int J Food Microbiol; 1994 Nov; 23(3-4):265-75. PubMed ID: 7873330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A prototype model structure for mixed microbial populations in homogeneous food products.
    Dens EJ; Vereecken KM; Van Impe JF
    J Theor Biol; 1999 Dec; 201(3):159-70. PubMed ID: 10600360
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of predictive microbiology in microbial food safety risk assessment.
    Walls I; Scott VN
    Int J Food Microbiol; 1997 May; 36(2-3):97-102. PubMed ID: 9217098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.