These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 12635928)

  • 1. Virulence and the heat shock response.
    Gophna U; Ron EZ
    Int J Med Microbiol; 2003 Feb; 292(7-8):453-61. PubMed ID: 12635928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gut myoelectrical activity induces heat shock response in Escherichia coli and Caco-2 cells.
    Laubitz D; Jankowska A; Sikora A; Woliński J; Zabielski R; Grzesiuk E
    Exp Physiol; 2006 Sep; 91(5):867-75. PubMed ID: 16728456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptation of Escherichi coli to elevated temperatures involves a change in stability of heat shock gene transcripts.
    Shenhar Y; Rasouly A; Biran D; Ron EZ
    Environ Microbiol; 2009 Dec; 11(12):2989-97. PubMed ID: 19624711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcription of the ibpB heat-shock gene is under control of sigma(32)- and sigma(54)-promoters, a third regulon of heat-shock response.
    Kuczyńska-Wisńik D; Laskowska E; Taylor A
    Biochem Biophys Res Commun; 2001 Jun; 284(1):57-64. PubMed ID: 11374870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Genetic regulation of the heat-shock response in Escherichia coli].
    Ramírez Santos J; Solís Guzmán G; Gómez Eichelmann MC
    Rev Latinoam Microbiol; 2001; 43(1):51-63. PubMed ID: 17061571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and sequence analysis of rpoH genes encoding sigma 32 homologs from gram negative bacteria: conserved mRNA and protein segments for heat shock regulation.
    Nakahigashi K; Yanagi H; Yura T
    Nucleic Acids Res; 1995 Nov; 23(21):4383-90. PubMed ID: 7501460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mycoplasmas regulate the expression of heat-shock protein genes through CIRCE-HrcA interactions.
    Chang LJ; Chen WH; Minion FC; Shiuan D
    Biochem Biophys Res Commun; 2008 Feb; 367(1):213-8. PubMed ID: 18164681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidative stress and heat-shock responses in Desulfovibrio vulgaris by genome-wide transcriptomic analysis.
    Zhang W; Culley DE; Hogan M; Vitiritti L; Brockman FJ
    Antonie Van Leeuwenhoek; 2006 Jul; 90(1):41-55. PubMed ID: 16680520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The heat-shock protein ClpB of Francisella tularensis is involved in stress tolerance and is required for multiplication in target organs of infected mice.
    Meibom KL; Dubail I; Dupuis M; Barel M; Lenco J; Stulik J; Golovliov I; Sjöstedt A; Charbit A
    Mol Microbiol; 2008 Mar; 67(6):1384-401. PubMed ID: 18284578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The heat-shock response: regulation and function of heat-shock proteins and molecular chaperones.
    Morimoto RI; Kline MP; Bimston DN; Cotto JJ
    Essays Biochem; 1997; 32():17-29. PubMed ID: 9493008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Replicon-specific regulation of small heat shock genes in Agrobacterium tumefaciens.
    Balsiger S; Ragaz C; Baron C; Narberhaus F
    J Bacteriol; 2004 Oct; 186(20):6824-9. PubMed ID: 15466035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stress-induced activation of the heat-shock response: cell and molecular biology of heat-shock factors.
    Cotto JJ; Morimoto RI
    Biochem Soc Symp; 1999; 64():105-18. PubMed ID: 10207624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heat shock response in gastrointestinal tract.
    Sikora A; Grzesiuk E
    J Physiol Pharmacol; 2007 Aug; 58 Suppl 3():43-62. PubMed ID: 17901582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compensatory role of PspA, a member of the phage shock protein operon, in rpoE mutant Salmonella enterica serovar Typhimurium.
    Becker LA; Bang IS; Crouch ML; Fang FC
    Mol Microbiol; 2005 May; 56(4):1004-16. PubMed ID: 15853886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. clpC and clpP1P2 gene expression in Corynebacterium glutamicum is controlled by a regulatory network involving the transcriptional regulators ClgR and HspR as well as the ECF sigma factor sigmaH.
    Engels S; Schweitzer JE; Ludwig C; Bott M; Schaffer S
    Mol Microbiol; 2004 Apr; 52(1):285-302. PubMed ID: 15049827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alternative sigma factor interactions in Salmonella: sigma and sigma promote antioxidant defences by enhancing sigma levels.
    Bang IS; Frye JG; McClelland M; Velayudhan J; Fang FC
    Mol Microbiol; 2005 May; 56(3):811-23. PubMed ID: 15819634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of heat-shock genes in bacteria: from signal sensing to gene expression output.
    Roncarati D; Scarlato V
    FEMS Microbiol Rev; 2017 Jul; 41(4):549-574. PubMed ID: 28402413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Stress-inducible bacterial proteins and virulence].
    Basnak'ian IA; Bondarenko VM; Mel'nikova VA; Beliavskaia VA
    Zh Mikrobiol Epidemiol Immunobiol; 2001; (5):101-8. PubMed ID: 11871286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acidic pH shock induces the expressions of a wide range of stress-response genes.
    Kim YJ; Moon MH; Song JY; Smith CP; Hong SK; Chang YK
    BMC Genomics; 2008 Dec; 9():604. PubMed ID: 19087294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Translational control of bacterial heat shock and virulence genes by temperature-sensing mRNAs.
    Narberhaus F
    RNA Biol; 2010; 7(1):84-9. PubMed ID: 20009504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.