These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 12636199)

  • 1. A direct analytical demonstration of the essential equivalence of detrended fluctuation analysis and spectral analysis of RR interval variability.
    Willson K; Francis DP
    Physiol Meas; 2003 Feb; 24(1):N1-7. PubMed ID: 12636199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time variation of ammonia, acetone, isoprene and ethanol in breath: a quantitative SIFT-MS study over 30 days.
    Diskin AM; Spanel P; Smith D
    Physiol Meas; 2003 Feb; 24(1):107-19. PubMed ID: 12636190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increase of acetone and ammonia in urine headspace and breath during ovulation quantified using selected ion flow tube mass spectrometry.
    Diskin AM; Spanel P; Smith D
    Physiol Meas; 2003 Feb; 24(1):191-9. PubMed ID: 12636196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real time analysis of breath volatiles using SIFT-MS in cigarette smoking.
    Senthilmohan ST; McEwan MJ; Wilson PF; Milligan DB; Freeman CG
    Redox Rep; 2001; 6(3):185-7. PubMed ID: 11523595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative analysis of trace gases of breath during exercise using the new SIFT-MS technique.
    Senthilmohan ST; Milligan DB; McEwan MJ; Freeman CG; Wilson PF
    Redox Rep; 2000; 5(2-3):151-3. PubMed ID: 10939300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Method for the collection and analysis of volatile compounds in the breath.
    Phillips M; Greenberg J
    J Chromatogr; 1991 Mar; 564(1):242-9. PubMed ID: 1860917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Repeatability of the measurement of exhaled volatile metabolites using selected ion flow tube mass spectrometry.
    Boshier PR; Marczin N; Hanna GB
    J Am Soc Mass Spectrom; 2010 Jun; 21(6):1070-4. PubMed ID: 20335048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solid-phase microextraction for the analysis of human breath.
    Grote C; Pawliszyn J
    Anal Chem; 1997 Feb; 69(4):587-96. PubMed ID: 9043197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On-line, simultaneous quantification of ethanol, some metabolites and water vapour in breath following the ingestion of alcohol.
    Smith D; Wang T; Spanĕl P
    Physiol Meas; 2002 Aug; 23(3):477-89. PubMed ID: 12214757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantification of breath isoprene using the selected ion flow tube mass spectrometric analytical method.
    Spanel P; Davies S; Smith D
    Rapid Commun Mass Spectrom; 1999; 13(17):1733-8. PubMed ID: 10455242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of volatile organic compounds in exhaled breath as collected in evacuated electropolished canisters.
    Pleil JD; Lindstrom AB
    J Chromatogr B Biomed Appl; 1995 Mar; 665(2):271-9. PubMed ID: 7795807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental setup and analytical methods for the non-invasive determination of volatile organic compounds, formaldehyde and NOx in exhaled human breath.
    Riess U; Tegtbur U; Fauck C; Fuhrmann F; Markewitz D; Salthammer T
    Anal Chim Acta; 2010 Jun; 669(1-2):53-62. PubMed ID: 20510903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Origins of breath isoprene.
    Jones AW; Lagesson V; Tagesson C
    J Clin Pathol; 1995 Oct; 48(10):979-80. PubMed ID: 8537507
    [No Abstract]   [Full Text] [Related]  

  • 14. Influence of respiratory variables on the on-line detection of exhaled trace gases by PTR-MS.
    Boshier PR; Priest OH; Hanna GB; Marczin N
    Thorax; 2011 Oct; 66(10):919-20. PubMed ID: 21474496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring of human chemical signatures using membrane inlet mass spectrometry.
    Giannoukos S; Brkić B; Taylor S; France N
    Anal Chem; 2014 Jan; 86(2):1106-14. PubMed ID: 24377277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Can volatile compounds in exhaled breath be used to monitor control in diabetes mellitus?
    Smith D; Spaněl P; Fryer AA; Hanna F; Ferns GA
    J Breath Res; 2011 Jun; 5(2):022001. PubMed ID: 21512208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a protocol to measure volatile organic compounds in human breath: a comparison of rebreathing and on-line single exhalations using proton transfer reaction mass spectrometry.
    O'Hara ME; O'Hehir S; Green S; Mayhew CA
    Physiol Meas; 2008 Mar; 29(3):309-30. PubMed ID: 18367807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measuring isoprene in breath.
    Mukhopadhyay R
    Anal Chem; 2007 Apr; 79(7):2610. PubMed ID: 17476722
    [No Abstract]   [Full Text] [Related]  

  • 19. Measurements of the weak UV absorptions of isoprene and acetone at 261-275 nm using cavity ringdown spectroscopy for evaluation of a potential portable ringdown breath analyzer.
    Sahay P; Scherrer ST; Wang C
    Sensors (Basel); 2013 Jun; 13(7):8170-87. PubMed ID: 23803787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship between detrended fluctuation analysis and spectral analysis of heart-rate variability.
    Willson K; Francis DP; Wensel R; Coats AJ; Parker KH
    Physiol Meas; 2002 May; 23(2):385-401. PubMed ID: 12051310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.