These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
416 related articles for article (PubMed ID: 12636472)
1. Towards deterministic equations for Lévy walks: the fractional material derivative. Sokolov IM; Metzler R Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jan; 67(1 Pt 1):010101. PubMed ID: 12636472 [TBL] [Abstract][Full Text] [Related]
2. Fluid limit of the continuous-time random walk with general Lévy jump distribution functions. Cartea A; del-Castillo-Negrete D Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 1):041105. PubMed ID: 17994934 [TBL] [Abstract][Full Text] [Related]
3. Continuous-time multidimensional Markovian description of Lévy walks. Lubashevsky I; Friedrich R; Heuer A Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 1):031148. PubMed ID: 19905103 [TBL] [Abstract][Full Text] [Related]
4. Monte Carlo simulation of uncoupled continuous-time random walks yielding a stochastic solution of the space-time fractional diffusion equation. Fulger D; Scalas E; Germano G Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 1):021122. PubMed ID: 18352002 [TBL] [Abstract][Full Text] [Related]
5. Comment on "Towards deterministic equations for Lévy walks: the fractional material derivative". Chukbar KV; Zaburdaev VY Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 1):033101. PubMed ID: 14524816 [TBL] [Abstract][Full Text] [Related]
6. Fractional diffusion equation for an n-dimensional correlated Lévy walk. Taylor-King JP; Klages R; Fedotov S; Van Gorder RA Phys Rev E; 2016 Jul; 94(1-1):012104. PubMed ID: 27575074 [TBL] [Abstract][Full Text] [Related]
7. Selection pressures give composite correlated random walks Lévy walk characteristics. Reynolds AM J Theor Biol; 2013 Sep; 332():117-22. PubMed ID: 23665359 [TBL] [Abstract][Full Text] [Related]
8. Continuous-time random walks with internal dynamics and subdiffusive reaction-diffusion equations. Eule S; Friedrich R; Jenko F; Sokolov IM Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Dec; 78(6 Pt 1):060102. PubMed ID: 19256785 [TBL] [Abstract][Full Text] [Related]
9. Realization of Lévy walks as Markovian stochastic processes. Lubashevsky I; Friedrich R; Heuer A Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 1):011110. PubMed ID: 19257004 [TBL] [Abstract][Full Text] [Related]
10. Kinetic equation of linear fractional stable motion and applications to modeling the scaling of intermittent bursts. Watkins NW; Credgington D; Sanchez R; Rosenberg SJ; Chapman SC Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 1):041124. PubMed ID: 19518190 [TBL] [Abstract][Full Text] [Related]
11. Fractional Fokker-Planck equations for subdiffusion with space- and time-dependent forces. Henry BI; Langlands TA; Straka P Phys Rev Lett; 2010 Oct; 105(17):170602. PubMed ID: 21231032 [TBL] [Abstract][Full Text] [Related]
12. Characterization of stationary states in random walks with stochastic resetting. Méndez V; Campos D Phys Rev E; 2016 Feb; 93(2):022106. PubMed ID: 26986287 [TBL] [Abstract][Full Text] [Related]
13. Lévy random walks on multiplex networks. Guo Q; Cozzo E; Zheng Z; Moreno Y Sci Rep; 2016 Nov; 6():37641. PubMed ID: 27892508 [TBL] [Abstract][Full Text] [Related]
14. Single integrodifferential wave equation for a Lévy walk. Fedotov S Phys Rev E; 2016 Feb; 93(2):020101. PubMed ID: 26986271 [TBL] [Abstract][Full Text] [Related]
15. Space-fractional advection-diffusion and reflective boundary condition. Krepysheva N; Di Pietro L; Néel MC Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 1):021104. PubMed ID: 16605326 [TBL] [Abstract][Full Text] [Related]
16. Continuous-time random walks on bounded domains. Burch N; Lehoucq RB Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jan; 83(1 Pt 1):012105. PubMed ID: 21405732 [TBL] [Abstract][Full Text] [Related]
17. Stochastic calculus for uncoupled continuous-time random walks. Germano G; Politi M; Scalas E; Schilling RL Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 2):066102. PubMed ID: 19658559 [TBL] [Abstract][Full Text] [Related]
18. Lévy flights versus Lévy walks in bounded domains. Dybiec B; Gudowska-Nowak E; Barkai E; Dubkov AA Phys Rev E; 2017 May; 95(5-1):052102. PubMed ID: 28618620 [TBL] [Abstract][Full Text] [Related]
19. Asymptotic densities of ballistic Lévy walks. Froemberg D; Schmiedeberg M; Barkai E; Zaburdaev V Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022131. PubMed ID: 25768482 [TBL] [Abstract][Full Text] [Related]
20. Navigation by anomalous random walks on complex networks. Weng T; Zhang J; Khajehnejad M; Small M; Zheng R; Hui P Sci Rep; 2016 Nov; 6():37547. PubMed ID: 27876855 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]