These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 12636575)
1. Bistable gradient networks. I. Attractors and pattern retrieval at low loading in the thermodynamic limit. McGraw PN; Menzinger M Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jan; 67(1 Pt 2):016118. PubMed ID: 12636575 [TBL] [Abstract][Full Text] [Related]
3. Bistable gradient networks. II. Storage capacity and behavior near saturation. McGraw PN; Menzinger M Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jan; 67(1 Pt 2):016119. PubMed ID: 12636576 [TBL] [Abstract][Full Text] [Related]
4. Memory dynamics in attractor networks with saliency weights. Tang H; Li H; Yan R Neural Comput; 2010 Jul; 22(7):1899-926. PubMed ID: 20235821 [TBL] [Abstract][Full Text] [Related]
5. Hopfield networks as a model of prototype-based category learning: A method to distinguish trained, spurious, and prototypical attractors. Gorman C; Robins A; Knott A Neural Netw; 2017 Jul; 91():76-84. PubMed ID: 28494329 [TBL] [Abstract][Full Text] [Related]
6. Context-dependent retrieval of information by neural-network dynamics with continuous attractors. Tsuboshita Y; Okamoto H Neural Netw; 2007 Aug; 20(6):705-13. PubMed ID: 17446042 [TBL] [Abstract][Full Text] [Related]
7. Coexistence of Cyclic Sequential Pattern Recognition and Associative Memory in Neural Networks by Attractor Mechanisms. Huo J; Yu J; Wang M; Yi Z; Leng J; Liao Y IEEE Trans Neural Netw Learn Syst; 2024 Mar; PP():. PubMed ID: 38442060 [TBL] [Abstract][Full Text] [Related]
8. Retrieval properties of a Hopfield model with random asymmetric interactions. Chengxiang Z; Dasgupta C; Singh MP Neural Comput; 2000 Apr; 12(4):865-80. PubMed ID: 10770835 [TBL] [Abstract][Full Text] [Related]
9. Reconstructing the Hopfield network as an inverse Ising problem. Huang H Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 2):036104. PubMed ID: 20365812 [TBL] [Abstract][Full Text] [Related]
10. Emergence of low noise frustrated states in E/I balanced neural networks. Recio I; Torres JJ Neural Netw; 2016 Dec; 84():91-101. PubMed ID: 27721205 [TBL] [Abstract][Full Text] [Related]
11. Prototype Analysis in Hopfield Networks With Hebbian Learning. McAlister H; Robins A; Szymanski L Neural Comput; 2024 Oct; 36(11):2322-2364. PubMed ID: 39212962 [TBL] [Abstract][Full Text] [Related]
12. Beyond the Maximum Storage Capacity Limit in Hopfield Recurrent Neural Networks. Gosti G; Folli V; Leonetti M; Ruocco G Entropy (Basel); 2019 Jul; 21(8):. PubMed ID: 33267440 [TBL] [Abstract][Full Text] [Related]
13. Reconstruction of noisy patterns by bistable gradient neural-like network. Chinarov V; Menzinger M Biosystems; 2003; 68(2-3):147-53. PubMed ID: 12595114 [TBL] [Abstract][Full Text] [Related]
14. Distinguishing spurious and nominal attractors applying unlearning to an asymmetric neural network. Horas JA; Bea EA Int J Neural Syst; 2002 Apr; 12(2):109-16. PubMed ID: 12035125 [TBL] [Abstract][Full Text] [Related]
15. Parallel retrieval of correlated patterns: from Hopfield networks to Boltzmann machines. Agliari E; Barra A; De Antoni A; Galluzzi A Neural Netw; 2013 Feb; 38():52-63. PubMed ID: 23246601 [TBL] [Abstract][Full Text] [Related]
16. Precritical State Transition Dynamics in the Attractor Landscape of a Molecular Interaction Network Underlying Colorectal Tumorigenesis. Chu H; Lee D; Cho KH PLoS One; 2015; 10(10):e0140172. PubMed ID: 26439385 [TBL] [Abstract][Full Text] [Related]
18. Driving-induced multistability in coupled chaotic oscillators: Symmetries and riddled basins. Ujjwal SR; Punetha N; Ramaswamy R; Agrawal M; Prasad A Chaos; 2016 Jun; 26(6):063111. PubMed ID: 27368776 [TBL] [Abstract][Full Text] [Related]
19. The road to chaos by time-asymmetric Hebbian learning in recurrent neural networks. Molter C; Salihoglu U; Bersini H Neural Comput; 2007 Jan; 19(1):80-110. PubMed ID: 17134318 [TBL] [Abstract][Full Text] [Related]
20. Effects of delays on the basin boundary of attraction in a hopfield network of two delay-connecting neurons. Xu J; Shang HL; Huang Y Nonlinear Dynamics Psychol Life Sci; 2009 Apr; 13(2):161-80. PubMed ID: 19327253 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]