BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

629 related articles for article (PubMed ID: 12636630)

  • 1. Optical properties of inverted opal photonic band gap crystals with stacking disorder.
    Wang ZL; Chan CT; Zhang WY; Chen Z; Ming NB; Sheng P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jan; 67(1 Pt 2):016612. PubMed ID: 12636630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Manifestation of intrinsic defects in optical properties of self-organized opal photonic crystals.
    Vlasov YuA; Astratov VN; Baryshev AV; Kaplyanskii AA; Karimov OZ; Limonov MF
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 May; 61(5B):5784-93. PubMed ID: 11031638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Doped colloidal photonic crystal structure with refractive index chirping to the [111] crystallographic axis.
    Park JH; Choi WS; Koo HY; Hong JC; Kim DY
    Langmuir; 2006 Jan; 22(1):94-100. PubMed ID: 16378406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of stacking faults on the optical properties of inverted opals.
    Yannopapas V; Stefanou N; Modinos A
    Phys Rev Lett; 2001 May; 86(21):4811-4. PubMed ID: 11384354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable photonic band gap crystals based on a liquid crystal-infiltrated inverse opal structure.
    Kubo S; Gu ZZ; Takahashi K; Fujishima A; Segawa H; Sato O
    J Am Chem Soc; 2004 Jul; 126(26):8314-9. PubMed ID: 15225074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Directional fluorescence spectra of laser dye in opal and inverse opal photonic crystals.
    Bechger L; Lodahl P; Vos WL
    J Phys Chem B; 2005 May; 109(20):9980-8. PubMed ID: 16852206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Double stacking faults in convectively assembled crystals of colloidal spheres.
    Hilhorst J; Abramova VV; Sinitskii A; Sapoletova NA; Napolskii KS; Eliseev AA; Byelov DV; Grigoryeva NA; Vasilieva AV; Bouwman WG; Kvashnina K; Snigirev A; Grigoriev SV; Petukhov AV
    Langmuir; 2009 Sep; 25(17):10408-12. PubMed ID: 19705906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Statistics of the eigenmodes and optical properties of one-dimensional disordered photonic crystals.
    Kaliteevski MA; Beggs DM; Brand S; Abram RA; Nikolaev VV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 2):056616. PubMed ID: 16803066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light exiting from real photonic band gap crystals is diffuse and strongly directional.
    Koenderink AF; Vos WL
    Phys Rev Lett; 2003 Nov; 91(21):213902. PubMed ID: 14683302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-quality photonic crystals with a nearly complete band gap obtained by direct inversion of woodpile templates with titanium dioxide.
    Marichy C; Muller N; Froufe-Pérez LS; Scheffold F
    Sci Rep; 2016 Feb; 6():21818. PubMed ID: 26911540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finite element method analysis of band gap and transmission of two-dimensional metallic photonic crystals at terahertz frequencies.
    Degirmenci E; Landais P
    Appl Opt; 2013 Oct; 52(30):7367-75. PubMed ID: 24216592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stacking fault structure in shear-induced colloidal crystallization.
    Solomon T; Solomon MJ
    J Chem Phys; 2006 Apr; 124(13):134905. PubMed ID: 16613475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermally Driven Photonic Actuator Based on Silica Opal Photonic Crystal with Liquid Crystal Elastomer.
    Xing H; Li J; Shi Y; Guo J; Wei J
    ACS Appl Mater Interfaces; 2016 Apr; 8(14):9440-5. PubMed ID: 26996608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Waveguides in inverted opal photonic crystals.
    Lousse V; Fan S
    Opt Express; 2006 Jan; 14(2):866-78. PubMed ID: 19503406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical analysis of the fine crystalline structure of artificial opal films.
    Lozano G; Dorado LA; Schinca D; Depine RA; Míguez H
    Langmuir; 2009 Nov; 25(22):12860-4. PubMed ID: 19831378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres.
    Blanco A; Chomski E; Grabtchak S; Ibisate M; John S; Leonard SW; Lopez C; Meseguer F; Miguez H; Mondia JP; Ozin GA; Toader O; van Driel HM
    Nature; 2000 May; 405(6785):437-40. PubMed ID: 10839534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strong Photonic-Band-Gap Effect on the Spontaneous Emission in 3D Lead Halide Perovskite Photonic Crystals.
    Zhou X; Li M; Wang K; Li H; Li Y; Li C; Yan Y; Zhao Y; Song Y
    Chemphyschem; 2018 Aug; 19(16):2101-2106. PubMed ID: 29575398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-threshold lasing in active opal photonic crystals.
    Reddy MS; Vijaya R; Rukhlenko ID; Premaratne M
    Opt Lett; 2013 Apr; 38(7):1046-8. PubMed ID: 23546238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hypersonic modulation of light in three-dimensional photonic and phononic band-gap materials.
    Akimov AV; Tanaka Y; Pevtsov AB; Kaplan SF; Golubev VG; Tamura S; Yakovlev DR; Bayer M
    Phys Rev Lett; 2008 Jul; 101(3):033902. PubMed ID: 18764257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural characterization of colloidal crystals and inverse opals using transmission X-ray microscopy.
    Huang BH; Wang CC; Liao CH; Wu PW; Song YF
    J Colloid Interface Sci; 2014 Jul; 426():199-205. PubMed ID: 24863783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.