These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 12636633)

  • 1. Betweenness centrality correlation in social networks.
    Goh KI; Oh E; Kahng B; Kim D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jan; 67(1 Pt 2):017101. PubMed ID: 12636633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Betweenness centrality of fractal and nonfractal scale-free model networks and tests on real networks.
    Kitsak M; Havlin S; Paul G; Riccaboni M; Pammolli F; Stanley HE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 2):056115. PubMed ID: 17677141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Betweenness centrality of teams in social networks.
    Lee J; Lee Y; Oh SM; Kahng B
    Chaos; 2021 Jun; 31(6):061108. PubMed ID: 34241328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Where to look for power Laws in urban road networks?
    Akbarzadeh M; Memarmontazerin S; Soleimani S
    Appl Netw Sci; 2018; 3(1):4. PubMed ID: 30839786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimizing transport efficiency on scale-free networks through assortative or dissortative topology.
    Xue YH; Wang J; Li L; He D; Hu B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 2):037101. PubMed ID: 20365905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Statistical analysis of 22 public transport networks in Poland.
    Sienkiewicz J; Hołyst JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 2):046127. PubMed ID: 16383488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Universal behavior of load distribution in scale-free networks.
    Goh KI; Kahng B; Kim D
    Phys Rev Lett; 2001 Dec; 87(27 Pt 1):278701. PubMed ID: 11800921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Betweenness centrality in a weighted network.
    Wang H; Hernandez JM; Van Mieghem P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 2):046105. PubMed ID: 18517688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Centrality in networks of urban streets.
    Crucitti P; Latora V; Porta S
    Chaos; 2006 Mar; 16(1):015113. PubMed ID: 16599779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Asymptotic properties of degree-correlated scale-free networks.
    Menche J; Valleriani A; Lipowsky R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 2):046103. PubMed ID: 20481782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Load distribution in weighted complex networks.
    Goh KI; Noh JD; Kahng B; Kim D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 2):017102. PubMed ID: 16090144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal pinning controllability of complex networks: dependence on network structure.
    Jalili M; Askari Sichani O; Yu X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012803. PubMed ID: 25679653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exact scaling properties of a hierarchical network model.
    Noh JD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 2):045103. PubMed ID: 12786419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast algorithm for successive computation of group betweenness centrality.
    Puzis R; Elovici Y; Dolev S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):056709. PubMed ID: 18233792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scale-free trees: the skeletons of complex networks.
    Kim DH; Noh JD; Jeong H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):046126. PubMed ID: 15600479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Percolation transition in networks with degree-degree correlation.
    Noh JD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 2):026116. PubMed ID: 17930113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Classification of transport backbones of complex networks.
    Choi W; Chae H; Yook SH; Kim Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):060802. PubMed ID: 24483375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlations in scale-free networks: tomography and percolation.
    Xulvi-Brunet R; Pietsch W; Sokolov IM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 2):036119. PubMed ID: 14524844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterizing general scale-free networks by vertex-degree sequences.
    Xiao W; Lai Z; Chen G
    Chaos; 2015 Nov; 25(11):113111. PubMed ID: 26627571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rewiring dynamical networks with prescribed degree distribution for enhancing synchronizability.
    Dadashi M; Barjasteh I; Jalili M
    Chaos; 2010 Dec; 20(4):043119. PubMed ID: 21198089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.