These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 12636685)

  • 1. Cohen-Grest model for the dynamics of supercooled liquids.
    Paluch M; Casalini R; Roland CM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 1):021508. PubMed ID: 12636685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Positronium annihilation lifetimes and dielectric spectroscopy studies on diethyl phthalate: phenomenological correlations and microscopic analyses in terms of the extended free volume model by Cohen-Grest.
    Pawlus S; Bartos J; Sausa O; Kristiak J; Paluch M
    J Chem Phys; 2006 Mar; 124(10):104505. PubMed ID: 16542086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Free volume from positron lifetime and pressure-volume-temperature experiments in relation to structural relaxation of van der Waals molecular glass-forming liquids.
    Dlubek G; Shaikh MQ; Rätzke K; Paluch M; Faupel F
    J Phys Condens Matter; 2010 Jun; 22(23):235104. PubMed ID: 21393763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature-Volume Entropic Model for Viscosities and Structural Relaxation Times of Glass Formers.
    Masiewicz E; Grzybowski A; Sokolov AP; Paluch M
    J Phys Chem Lett; 2012 Sep; 3(18):2643-8. PubMed ID: 26295885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature dependence of the free volume from positron lifetime experiments and its relation to structural dynamics: phenylphthalein-dimethylether.
    Dlubek G; Shaikh MQ; Rätzke K; Faupel F; Paluch M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 1):051505. PubMed ID: 19113134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A universal modified van der Waals equation of state. Part I: Polymer and mineral glass formers.
    Rault J
    Eur Phys J E Soft Matter; 2014 Nov; 37(11):113. PubMed ID: 25403833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of molecular structure on the dynamics of supercooled van der Waals liquids.
    Casalini R; Paluch M; Roland CM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Mar; 67(3 Pt 1):031505. PubMed ID: 12689071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Moderately and strongly supercooled liquids: a temperature-derivative study of the primary relaxation time scale.
    Kokshenev VB; Borges PD; Sullivan NS
    J Chem Phys; 2005 Mar; 122(11):114510. PubMed ID: 15836232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comment on: "Disentangling density and temperature effects in the viscous slowing down of glass forming liquids" [J. Chem. Phys. 120, 6135 (2004)].
    Roland CM; Casalini R
    J Chem Phys; 2004 Dec; 121(22):11503-4; author reply 11505-6. PubMed ID: 15634111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The temperature dependence of free volume in phenyl salicylate and its relation to structural dynamics: a positron annihilation lifetime and pressure-volume-temperature study.
    Dlubek G; Shaikh MQ; Raetzke K; Faupel F; Pionteck J; Paluch M
    J Chem Phys; 2009 Apr; 130(14):144906. PubMed ID: 19368470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complex dynamics of supercooling n-butylcyanobiphenyl (4CB).
    Drozd-Rzoska A; Rzoska S; Pawlus S; Zioło J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 1):031501. PubMed ID: 16241438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Free-volume dynamics in glasses and supercooled liquids.
    Bendler JT; Fontanella JJ; Shlesinger MF; Bartos J; Sausa O; Kristiak J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 1):031508. PubMed ID: 15903436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The dynamic susceptibility in glass forming molecular liquids: the search for universal relaxation patterns II.
    Blochowicz T; Gainaru C; Medick P; Tschirwitz C; Rössler EA
    J Chem Phys; 2006 Apr; 124(13):134503. PubMed ID: 16613457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A macroscopic model that connects the molar excess entropy of a supercooled liquid near its glass transition temperature to its viscosity.
    Matsuoka H
    J Chem Phys; 2012 Nov; 137(20):204506. PubMed ID: 23206018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The protein "glass" transition and the role of the solvent.
    Ngai KL; Capaccioli S; Shinyashiki N
    J Phys Chem B; 2008 Mar; 112(12):3826-32. PubMed ID: 18318525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics in supercooled ionic organic liquids and mode coupling theory analysis.
    Li J; Wang I; Fruchey K; Fayer MD
    J Phys Chem A; 2006 Sep; 110(35):10384-91. PubMed ID: 16942043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theory of the viscosity of supercooled liquids and the glass transition: fragile liquids.
    Rah K; Eu BC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Nov; 68(5 Pt 1):051204. PubMed ID: 14682791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular mobility of amorphous S-flurbiprofen: a dielectric relaxation spectroscopy approach.
    Rodrigues AC; Viciosa MT; Danède F; Affouard F; Correia NT
    Mol Pharm; 2014 Jan; 11(1):112-30. PubMed ID: 24215236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamical scaling of the glass transition dynamics.
    Casalini R; Roland CM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 1):062501. PubMed ID: 15244643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The descent into glass formation in polymer fluids.
    Freed KF
    Acc Chem Res; 2011 Mar; 44(3):194-203. PubMed ID: 21207948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.