These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Theoretical results for sandpile models of self-organized criticality with multiple topplings. Paczuski M; Bassler KE Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Oct; 62(4 Pt B):5347-52. PubMed ID: 11089096 [TBL] [Abstract][Full Text] [Related]
9. Derivation of continuum stochastic equations for discrete growth models. Park SC; Kim D; Park JM Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jan; 65(1 Pt 2):015102. PubMed ID: 11800720 [TBL] [Abstract][Full Text] [Related]
10. Langevin equations for competitive growth models. Silveira FA; Aarão Reis FD Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011601. PubMed ID: 22400575 [TBL] [Abstract][Full Text] [Related]
11. Dynamic properties in a family of competitive growing models. Horowitz CM; Albano EV Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 1):031111. PubMed ID: 16605504 [TBL] [Abstract][Full Text] [Related]
12. Oslo rice pile model is a quenched Edwards-Wilkinson equation. Pruessner G Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Mar; 67(3 Pt 1):030301. PubMed ID: 12689044 [TBL] [Abstract][Full Text] [Related]
13. Scaling of ballistic deposition from a Langevin equation. Haselwandter CA; Vvedensky DD Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 1):040101. PubMed ID: 16711773 [TBL] [Abstract][Full Text] [Related]
14. Statistical mechanics of the fluctuating lattice Boltzmann equation. Dünweg B; Schiller UD; Ladd AJ Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 2):036704. PubMed ID: 17930358 [TBL] [Abstract][Full Text] [Related]
15. Crossover effects in a discrete deposition model with Kardar-Parisi-Zhang scaling. Chame A; Aarão Reis FD Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 1):051104. PubMed ID: 12513464 [TBL] [Abstract][Full Text] [Related]
17. Finite element discretization of non-linear diffusion equations with thermal fluctuations. de la Torre JA; Español P; Donev A J Chem Phys; 2015 Mar; 142(9):094115. PubMed ID: 25747069 [TBL] [Abstract][Full Text] [Related]
18. Fourier acceleration of Langevin molecular dynamics. Alexander FJ; Boghosian BM; Brower RC; Kimura SR Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Dec; 64(6 Pt 2):066704. PubMed ID: 11736310 [TBL] [Abstract][Full Text] [Related]
19. Anomalous roughening in competitive growth models with time-decreasing rates of correlated dynamics. Aarão Reis FD Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 1):031604. PubMed ID: 22060382 [TBL] [Abstract][Full Text] [Related]
20. Maximal- and minimal-height distributions of fluctuating interfaces. Oliveira TJ; Aarão Reis FD Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 1):041605. PubMed ID: 18517633 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]