These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 12636768)

  • 1. Classical nucleation theory revisited.
    Drossinos Y; Kevrekidis PG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026127. PubMed ID: 12636768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Translational invariance in nucleation theories: theoretical formulation.
    Drossinos Y; Kevrekidis PG; Georgopoulos PG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 2):036123. PubMed ID: 11308725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Random phase approximation for the non-uniform Yukawa fluid.
    Barrett JC
    J Phys Condens Matter; 2019 Apr; 31(15):155002. PubMed ID: 30665210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Partitioned density functional approach for a Lennard-Jones fluid.
    Zhou S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec; 68(6 Pt 1):061201. PubMed ID: 14754186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reformulation of density functional theory for generation of the nonuniform density distribution.
    Zhou S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 1):061206. PubMed ID: 11415079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent developments in the kinetic theory of nucleation.
    Ruckenstein E; Djikaev YS
    Adv Colloid Interface Sci; 2005 Dec; 118(1-3):51-72. PubMed ID: 16137628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Some estimates of the surface tension of curved surfaces using density functional theory.
    Barrett JC
    J Chem Phys; 2006 Apr; 124(14):144705. PubMed ID: 16626229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classical density functional theory for the prediction of the surface tension and interfacial properties of fluids mixtures of chain molecules based on the statistical associating fluid theory for potentials of variable range.
    Llovell F; Galindo A; Blas FJ; Jackson G
    J Chem Phys; 2010 Jul; 133(2):024704. PubMed ID: 20632767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationships among coarse-grained field theories of fluctuations in polymer liquids.
    Morse DC; Qin J
    J Chem Phys; 2011 Feb; 134(8):084902. PubMed ID: 21361554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterogeneous nucleation at a wall near a wetting transition: a Monte Carlo test of the classical theory.
    Winter D; Virnau P; Binder K
    J Phys Condens Matter; 2009 Nov; 21(46):464118. PubMed ID: 21715882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Free energy of critical droplets-from the binodal to the spinodal.
    Aasen A; Wilhelmsen Ø; Hammer M; Reguera D
    J Chem Phys; 2023 Mar; 158(11):114108. PubMed ID: 36948791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monte Carlo simulation study of droplet nucleation.
    Neimark AV; Vishnyakov A
    J Chem Phys; 2005 May; 122(17):174508. PubMed ID: 15910046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Density functional theory of inhomogeneous liquids. IV. Squared-gradient approximation and classical nucleation theory.
    Lutsko JF
    J Chem Phys; 2011 Apr; 134(16):164501. PubMed ID: 21528967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical tests of nucleation theories for the Ising models.
    Ryu S; Cai W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 1):011603. PubMed ID: 20866625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water 16-mers and hexamers: assessment of the three-body and electrostatically embedded many-body approximations of the correlation energy or the nonlocal energy as ways to include cooperative effects.
    Qi HW; Leverentz HR; Truhlar DG
    J Phys Chem A; 2013 May; 117(21):4486-99. PubMed ID: 23627665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the thermodynamic expansion of the nucleation free-energy barrier.
    Barrett JC
    J Chem Phys; 2009 Aug; 131(8):084711. PubMed ID: 19725625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effective 3-body interaction for mean-field and density-functional theory.
    Gezerlis A; Bertsch GF
    Phys Rev Lett; 2010 Nov; 105(21):212501. PubMed ID: 21231293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Homogeneous nucleation in vapor-liquid phase transition of Lennard-Jones fluids: a density functional theory approach.
    Ghosh S; Ghosh SK
    J Chem Phys; 2011 Jan; 134(2):024502. PubMed ID: 21241115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of vapor-liquid coexistence in finite volumes: a method to compute the surface free energy of droplets.
    Schrader M; Virnau P; Binder K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 1):061104. PubMed ID: 19658470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A fingerprint of surface-tension anisotropy in the free-energy cost of nucleation.
    Prestipino S; Laio A; Tosatti E
    J Chem Phys; 2013 Feb; 138(6):064508. PubMed ID: 23425480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.