These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 12636777)
1. Measuring billiard eigenfunctions with arbitrary trajectories. Biswas D Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026208. PubMed ID: 12636777 [TBL] [Abstract][Full Text] [Related]
2. Investigation of the quantum cantori regime in quarter-stadium billiards. Savytskyy N; Sirko L Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jun; 65(6 Pt 2):066202. PubMed ID: 12188810 [TBL] [Abstract][Full Text] [Related]
3. Stochastic approach to the generalized Schrödinger equation: A method of eigenfunction expansion. Tsuchida S; Kuratsuji H Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):052146. PubMed ID: 26066158 [TBL] [Abstract][Full Text] [Related]
4. Classical projected phase space density of billiards and its relation to the quantum neumann spectrum. Biswas D Phys Rev Lett; 2004 Nov; 93(20):204102. PubMed ID: 15600928 [TBL] [Abstract][Full Text] [Related]
5. A polynomial approach to the spectrum of Dirac-Weyl polygonal Billiards. Quintela MFCM; Lopes Dos Santos JMB J Phys Condens Matter; 2020 Oct; 33(3):. PubMed ID: 33017811 [TBL] [Abstract][Full Text] [Related]
6. Numerical analysis of spectra of the Frobenius-Perron operator of a noisy one-dimensional mapping: toward a theory of stochastic bifurcations. Inoue J; Doi S; Kumagai S Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056219. PubMed ID: 11736066 [TBL] [Abstract][Full Text] [Related]
7. Arbitrary trajectory quantization method. Biswas D Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 2):016213. PubMed ID: 11304341 [TBL] [Abstract][Full Text] [Related]
8. Tunneling phenomena in the open elliptic quantum billiard. Garcia-Gracia H; Gutiérrez-Vega JC Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016210. PubMed ID: 23005510 [TBL] [Abstract][Full Text] [Related]
9. Localization of eigenfunctions in the stadium billiard. Bies WE; Kaplan L; Haggerty MR; Heller EJ Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 2):066214. PubMed ID: 11415213 [TBL] [Abstract][Full Text] [Related]
10. The Sinai billiard, square torus, and field chaos. Liboff RL; Liu J Chaos; 2000 Dec; 10(4):756-759. PubMed ID: 12779425 [TBL] [Abstract][Full Text] [Related]
11. Pseudopath semiclassical approximation to transport through open quantum billiards: Dyson equation for diffractive scattering. Stampfer C; Rotter S; Burgdörfer J; Wirtz L Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):036223. PubMed ID: 16241564 [TBL] [Abstract][Full Text] [Related]
12. Leaking billiards. Nagler J; Krieger M; Linke M; Schönke J; Wiersig J Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 2):046204. PubMed ID: 17500975 [TBL] [Abstract][Full Text] [Related]
13. The infinitesimal operator for the semigroup of the Frobenius-Perron operator from image sequence data: vector fields and transport barriers from movies. Santitissadeekorn N; Bollt EM Chaos; 2007 Jun; 17(2):023126. PubMed ID: 17614680 [TBL] [Abstract][Full Text] [Related]
14. Kernel-Based Approximation of the Koopman Generator and Schrödinger Operator. Klus S; Nüske F; Hamzi B Entropy (Basel); 2020 Jun; 22(7):. PubMed ID: 33286494 [TBL] [Abstract][Full Text] [Related]
15. Localization of wave patterns on classical periodic orbits in a square billiard. Chen YF; Huang KF; Lan YP Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 2):046215. PubMed ID: 12443307 [TBL] [Abstract][Full Text] [Related]
17. Focusing and imaging using eigenfunctions of the scattering operator. Mast TD; Nachman AI; Waag RC J Acoust Soc Am; 1997 Aug; 102(2 Pt 1):715-25. PubMed ID: 9265750 [TBL] [Abstract][Full Text] [Related]
18. Spectral analysis and an area-preserving extension of a piecewise linear intermittent map. Miyaguchi T; Aizawa Y Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jun; 75(6 Pt 2):066201. PubMed ID: 17677334 [TBL] [Abstract][Full Text] [Related]
19. Phase retrieval on annular and annular sector pupils by using the eigenfunction method to solve the transport of intensity equation. Huang S; Xi F; Liu C; Jiang Z J Opt Soc Am A Opt Image Sci Vis; 2012 Apr; 29(4):513-20. PubMed ID: 22472828 [TBL] [Abstract][Full Text] [Related]
20. Stability of eigenvalues of quantum graphs with respect to magnetic perturbation and the nodal count of the eigenfunctions. Berkolaiko G; Weyand T Philos Trans A Math Phys Eng Sci; 2014 Jan; 372(2007):20120522. PubMed ID: 24344344 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]