These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 12636819)
1. Saturation and postsaturation phenomena of Rayleigh-Taylor instability with adjacent modes. Ikegawa T; Nishihara K Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026404. PubMed ID: 12636819 [TBL] [Abstract][Full Text] [Related]
2. Ablation effects on weakly nonlinear Rayleigh-Taylor instability with a finite bandwidth. Ikegawa T; Nishihara K Phys Rev Lett; 2002 Sep; 89(11):115001. PubMed ID: 12225142 [TBL] [Abstract][Full Text] [Related]
3. Dependence of turbulent Rayleigh-Taylor instability on initial perturbations. Dimonte G Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 2):056305. PubMed ID: 15244930 [TBL] [Abstract][Full Text] [Related]
4. Pure single-mode Rayleigh-Taylor instability for arbitrary Atwood numbers. Liu W; Wang X; Liu X; Yu C; Fang M; Ye W Sci Rep; 2020 Mar; 10(1):4201. PubMed ID: 32144289 [TBL] [Abstract][Full Text] [Related]
5. Analytical model of nonlinear, single-mode, classical Rayleigh-Taylor instability at arbitrary Atwood numbers. Goncharov VN Phys Rev Lett; 2002 Apr; 88(13):134502. PubMed ID: 11955101 [TBL] [Abstract][Full Text] [Related]
6. Nonlinear evolution of an interface in the Richtmyer-Meshkov instability. Matsuoka C; Nishihara K; Fukuda Y Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Mar; 67(3 Pt 2):036301. PubMed ID: 12689159 [TBL] [Abstract][Full Text] [Related]
7. Nonlinear theory of the ablative Rayleigh-Taylor instability. Sanz J; Ramírez J; Ramis R; Betti R; Town RP Phys Rev Lett; 2002 Nov; 89(19):195002. PubMed ID: 12443120 [TBL] [Abstract][Full Text] [Related]
8. Statistical analysis of multimode weakly nonlinear Rayleigh-Taylor instability in the presence of surface tension. Garnier J; Cherfils-Clérouin C; Holstein PA Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 2):036401. PubMed ID: 14524897 [TBL] [Abstract][Full Text] [Related]
9. Late-time quadratic growth in single-mode Rayleigh-Taylor instability. Wei T; Livescu D Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 2):046405. PubMed ID: 23214698 [TBL] [Abstract][Full Text] [Related]
10. Secondary instability of the spike-bubble structures induced by nonlinear Rayleigh-Taylor instability with a diffuse interface. Han L; Yuan J; Dong M; Fan Z Phys Rev E; 2021 Sep; 104(3-2):035108. PubMed ID: 34654080 [TBL] [Abstract][Full Text] [Related]
11. Explicit expressions for the evolution of single-mode Rayleigh-Taylor and Richtmyer-Meshkov instabilities at arbitrary Atwood numbers. Mikaelian KO Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026319. PubMed ID: 12636812 [TBL] [Abstract][Full Text] [Related]
12. Analytic approach to nonlinear hydrodynamic instabilities driven by time-dependent accelerations. Mikaelian KO Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 2):016325. PubMed ID: 20365478 [TBL] [Abstract][Full Text] [Related]
14. Stabilization of ablative Rayleigh-Taylor instability due to change of the Atwood number. Ye W; Zhang W; He XT Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 2):057401. PubMed ID: 12059764 [TBL] [Abstract][Full Text] [Related]
15. Nonlinear excitation of the ablative Rayleigh-Taylor instability for all wave numbers. Zhang H; Betti R; Gopalaswamy V; Yan R; Aluie H Phys Rev E; 2018 Jan; 97(1-1):011203. PubMed ID: 29448450 [TBL] [Abstract][Full Text] [Related]
16. Multiple eigenmodes of the Rayleigh-Taylor instability observed for a fluid interface with smoothly varying density. III. Excitation and nonlinear evolution. Fan Z; Dong M Phys Rev E; 2020 Jun; 101(6-1):063103. PubMed ID: 32688480 [TBL] [Abstract][Full Text] [Related]
17. Acceleration- and deceleration-phase nonlinear Rayleigh-Taylor growth at spherical interfaces. Clark DS; Tabak M Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056308. PubMed ID: 16383746 [TBL] [Abstract][Full Text] [Related]
18. Nonlinear Rayleigh-Taylor instability of rotating inviscid fluids. Tao JJ; He XT; Ye WH; Busse FH Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013001. PubMed ID: 23410420 [TBL] [Abstract][Full Text] [Related]
19. Experimental measurements of the nonlinear Rayleigh-Taylor instability using a magnetorheological fluid. White J; Oakley J; Anderson M; Bonazza R Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 2):026303. PubMed ID: 20365647 [TBL] [Abstract][Full Text] [Related]
20. Exploring the Atwood-number dependence of the highly nonlinear Rayleigh-Taylor instability regime in high-energy-density conditions. Rigon G; Albertazzi B; Mabey P; Michel T; Falize E; Bouffetier V; Ceurvorst L; Masse L; Koenig M; Casner A Phys Rev E; 2021 Oct; 104(4-2):045213. PubMed ID: 34781551 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]