These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 12636922)

  • 1. The cytoplasmic domain of Xenopus NF-protocadherin interacts with TAF1/set.
    Heggem MA; Bradley RS
    Dev Cell; 2003 Mar; 4(3):419-29. PubMed ID: 12636922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A requirement for NF-protocadherin and TAF1/Set in cell adhesion and neural tube formation.
    Rashid D; Newell K; Shama L; Bradley R
    Dev Biol; 2006 Mar; 291(1):170-81. PubMed ID: 16426602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NF-protocadherin, a novel member of the cadherin superfamily, is required for Xenopus ectodermal differentiation.
    Bradley RS; Espeseth A; Kintner C
    Curr Biol; 1998 Mar; 8(6):325-34. PubMed ID: 9512415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NF-protocadherin and TAF1 regulate retinal axon initiation and elongation in vivo.
    Piper M; Dwivedy A; Leung L; Bradley RS; Holt CE
    J Neurosci; 2008 Jan; 28(1):100-5. PubMed ID: 18171927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Xema, a foxi-class gene expressed in the gastrula stage Xenopus ectoderm, is required for the suppression of mesendoderm.
    Suri C; Haremaki T; Weinstein DC
    Development; 2005 Jun; 132(12):2733-42. PubMed ID: 15901660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plakophilin-3 is required for late embryonic amphibian development, exhibiting roles in ectodermal and neural tissues.
    Munoz WA; Kloc M; Cho K; Lee M; Hofmann I; Sater A; Vleminckx K; McCrea PD
    PLoS One; 2012; 7(4):e34342. PubMed ID: 22496792
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupling of NF-protocadherin signaling to axon guidance by cue-induced translation.
    Leung LC; Urbančič V; Baudet ML; Dwivedy A; Bayley TG; Lee AC; Harris WA; Holt CE
    Nat Neurosci; 2013 Feb; 16(2):166-73. PubMed ID: 23292679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PCNS: a novel protocadherin required for cranial neural crest migration and somite morphogenesis in Xenopus.
    Rangarajan J; Luo T; Sargent TD
    Dev Biol; 2006 Jul; 295(1):206-18. PubMed ID: 16674935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of MAP kinase by the BMP-4/TAK1 pathway in Xenopus ectoderm.
    Goswami M; Uzgare AR; Sater AK
    Dev Biol; 2001 Aug; 236(2):259-70. PubMed ID: 11476570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NF-Protocadherin Regulates Retinal Ganglion Cell Axon Behaviour in the Developing Visual System.
    Leung LC; Harris WA; Holt CE; Piper M
    PLoS One; 2015; 10(10):e0141290. PubMed ID: 26489017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Xenopus Sox3 activates sox2 and geminin and indirectly represses Xvent2 expression to induce neural progenitor formation at the expense of non-neural ectodermal derivatives.
    Rogers CD; Harafuji N; Archer T; Cunningham DD; Casey ES
    Mech Dev; 2009; 126(1-2):42-55. PubMed ID: 18992330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A microarray screen for direct targets of Zic1 identifies an aquaporin gene, aqp-3b, expressed in the neural folds.
    Cornish EJ; Hassan SM; Martin JD; Li S; Merzdorf CS
    Dev Dyn; 2009 May; 238(5):1179-94. PubMed ID: 19384961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The requirement of histone modification by PRDM12 and Kdm4a for the development of pre-placodal ectoderm and neural crest in Xenopus.
    Matsukawa S; Miwata K; Asashima M; Michiue T
    Dev Biol; 2015 Mar; 399(1):164-176. PubMed ID: 25576027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A constitutively activated mutant of galphaq down-regulates EP-cadherin expression and decreases adhesion between ectodermal cells at gastrulation.
    Rizzoti K; Paquereau L; Shaw A; Knibiehler B; Audigier Y
    Mech Dev; 1998 Aug; 76(1-2):19-31. PubMed ID: 9767085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Forces driving cell sorting in the amphibian embryo.
    Winklbauer R; Parent SE
    Mech Dev; 2017 Apr; 144(Pt A):81-91. PubMed ID: 27697520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lens and retina formation require expression of Pitx3 in Xenopus pre-lens ectoderm.
    Khosrowshahian F; Wolanski M; Chang WY; Fujiki K; Jacobs L; Crawford MJ
    Dev Dyn; 2005 Nov; 234(3):577-89. PubMed ID: 16170783
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Watanabe T; Yamamoto T; Tsukano K; Hirano S; Horikawa A; Michiue T
    Development; 2018 Oct; 145(20):. PubMed ID: 30291163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. N- and E-cadherins in Xenopus are specifically required in the neural and non-neural ectoderm, respectively, for F-actin assembly and morphogenetic movements.
    Nandadasa S; Tao Q; Menon NR; Heasman J; Wylie C
    Development; 2009 Apr; 136(8):1327-38. PubMed ID: 19279134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. XBF-1, a winged helix transcription factor with dual activity, has a role in positioning neurogenesis in Xenopus competent ectoderm.
    Bourguignon C; Li J; Papalopulu N
    Development; 1998 Dec; 125(24):4889-900. PubMed ID: 9811573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cadherins and catenins, Wnts and SOXs: embryonic patterning in Xenopus.
    St Amand AL; Klymkowsky MW
    Int Rev Cytol; 2001; 203():291-355. PubMed ID: 11131519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.