These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 12637166)

  • 1. Peroxyl radicals promoted changes in water permeability through gramicidin channels in DPPC and lecithin-PC vesicles.
    Soto MA; Sotomayor CP; Lissi EA
    Chem Phys Lipids; 2003 Mar; 123(1):77-86. PubMed ID: 12637166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship between lipid peroxidation and rigidity in L-alpha-phosphatidylcholine-DPPC vesicles.
    Soto-Arriaza MA; Sotomayor CP; Lissi EA
    J Colloid Interface Sci; 2008 Jul; 323(1):70-4. PubMed ID: 18471823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of the addition of alkanols of different topology to dipalmitoyl-phosphatidylcholine vesicles in the presence of gramicidin.
    Soto-Arriaza MA; Olivares-Ortega C; Lissi EA
    J Colloid Interface Sci; 2012 Nov; 385(1):48-57. PubMed ID: 22889622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An electron spin resonance study of interactions between gramicidin A' and phosphatidylcholine bilayers.
    Ge M; Freed JH
    Biophys J; 1993 Nov; 65(5):2106-23. PubMed ID: 7507719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physicochemical properties of L-alpha dipalmitoyl phosphatidylcholine large unilamellar vesicles: Effect of hydrophobic block (PLA/PCL) of amphipathic diblock copolymers.
    Flandez K; Bonardd S; Soto-Arriaza M
    Chem Phys Lipids; 2020 Aug; 230():104927. PubMed ID: 32454007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of lipid/peptide hydrophobic mismatch on the thickness of diacylphosphatidylcholine bilayers. A 2H NMR and ESR study using designed transmembrane alpha-helical peptides and gramicidin A.
    de Planque MR; Greathouse DV; Koeppe RE; Schäfer H; Marsh D; Killian JA
    Biochemistry; 1998 Jun; 37(26):9333-45. PubMed ID: 9649314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipid-gramicidin interactions: dynamic structure of the boundary lipid by 2D-ELDOR.
    Costa-Filho AJ; Crepeau RH; Borbat PP; Ge M; Freed JH
    Biophys J; 2003 May; 84(5):3364-78. PubMed ID: 12719265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gramicidin-based fluorescence assay; for determining small molecules potential for modifying lipid bilayer properties.
    Ingólfsson HI; Sanford RL; Kapoor R; Andersen OS
    J Vis Exp; 2010 Oct; (44):. PubMed ID: 20972414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New fluorescent octadecapentaenoic acids as probes of lipid membranes and protein-lipid interactions.
    Mateo CR; Souto AA; Amat-Guerri F; Acuña AU
    Biophys J; 1996 Oct; 71(4):2177-91. PubMed ID: 8889194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated microfluidic biosensing platform for simultaneous confocal microscopy and electrophysiological measurements on bilayer lipid membranes and ion channels.
    Schulze Greiving VC; de Boer HL; Bomer JG; van den Berg A; Le Gac S
    Electrophoresis; 2018 Feb; 39(3):496-503. PubMed ID: 29193178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation study of a gramicidin/lipid bilayer system in excess water and lipid. II. Rates and mechanisms of water transport.
    Chiu SW; Subramaniam S; Jakobsson E
    Biophys J; 1999 Apr; 76(4):1939-50. PubMed ID: 10096892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of gramicidin channel formation in lipid bilayers: transmembrane monomer association.
    O'Connell AM; Koeppe RE; Andersen OS
    Science; 1990 Nov; 250(4985):1256-9. PubMed ID: 1700867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of motional heterogeneities in lipid bilayer membranes by dual probe fluorescence correlation spectroscopy.
    Korlach J; Baumgart T; Webb WW; Feigenson GW
    Biochim Biophys Acta; 2005 Mar; 1668(2):158-63. PubMed ID: 15737326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Response of unilamellar DPPC and DPPC:SM vesicles to hypo and hyper osmotic shocks: A comparison.
    Ahumada M; Calderon C; Alvarez C; Lanio ME; Lissi EA
    Chem Phys Lipids; 2015 May; 188():54-60. PubMed ID: 25956303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron-spin resonance study of aggregation of gramicidin in dipalmitoylphosphatidylcholine bilayers and hydrophobic mismatch.
    Ge M; Freed JH
    Biophys J; 1999 Jan; 76(1 Pt 1):264-80. PubMed ID: 9876140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane properties of cationic liposomes composed of dipalmitoylphosphatidylcholine and dipalmityldimethylammonium bromide.
    Yokoyama S; Inagaki A; Imura T; Ohkubo T; Tsubaki N; Sakai H; Abe M
    Colloids Surf B Biointerfaces; 2005 Sep; 44(4):204-10. PubMed ID: 16087320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of gramicidin with DPPC/DODAB bilayer fragments.
    Carvalho CA; Olivares-Ortega C; Soto-Arriaza MA; Carmona-Ribeiro AM
    Biochim Biophys Acta; 2012 Dec; 1818(12):3064-71. PubMed ID: 22960286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamics simulation of the gramicidin channel in a phospholipid bilayer.
    Woolf TB; Roux B
    Proc Natl Acad Sci U S A; 1994 Nov; 91(24):11631-5. PubMed ID: 7526400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impedance analysis of ion transport through gramicidin channels in supported lipid bilayers.
    Vallejo AE; Gervasi CA
    Bioelectrochemistry; 2002 Jul; 57(1):1-7. PubMed ID: 12049750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dipalmitoylphosphatidylcholine/linoleic acid mixed unilamellar vesicles as model membranes for studies on novel free-radical scavengers.
    Castelli F; Trombetta D; Tomaino A; Bonina F; Romeo G; Uccella N; Saija A
    J Pharmacol Toxicol Methods; 1997 Apr; 37(3):135-41. PubMed ID: 9253749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.