These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 12637257)
61. Effect of aging on muscle mitochondrial substrate utilization in humans. Petersen KF; Morino K; Alves TC; Kibbey RG; Dufour S; Sono S; Yoo PS; Cline GW; Shulman GI Proc Natl Acad Sci U S A; 2015 Sep; 112(36):11330-4. PubMed ID: 26305973 [TBL] [Abstract][Full Text] [Related]
62. Effect of insulin on human skeletal muscle mitochondrial ATP production, protein synthesis, and mRNA transcripts. Stump CS; Short KR; Bigelow ML; Schimke JM; Nair KS Proc Natl Acad Sci U S A; 2003 Jun; 100(13):7996-8001. PubMed ID: 12808136 [TBL] [Abstract][Full Text] [Related]
63. Intrauterine growth retardation increases the susceptibility of pigs to high-fat diet-induced mitochondrial dysfunction in skeletal muscle. Liu J; Chen D; Yao Y; Yu B; Mao X; He J; Huang Z; Zheng P PLoS One; 2012; 7(4):e34835. PubMed ID: 22523560 [TBL] [Abstract][Full Text] [Related]
64. Hepatic insulin resistance precedes the development of diabetes in a model of intrauterine growth retardation. Vuguin P; Raab E; Liu B; Barzilai N; Simmons R Diabetes; 2004 Oct; 53(10):2617-22. PubMed ID: 15448092 [TBL] [Abstract][Full Text] [Related]
65. [Oxidative metabolism of rat skeletal muscle mitochondria in adaptation to cold]. Belousova GP Tsitologiia; 1983 Jan; 25(1):72-6. PubMed ID: 6836742 [TBL] [Abstract][Full Text] [Related]
66. Uremic metabolites impair skeletal muscle mitochondrial energetics through disruption of the electron transport system and matrix dehydrogenase activity. Thome T; Salyers ZR; Kumar RA; Hahn D; Berru FN; Ferreira LF; Scali ST; Ryan TE Am J Physiol Cell Physiol; 2019 Oct; 317(4):C701-C713. PubMed ID: 31291144 [TBL] [Abstract][Full Text] [Related]
68. Dimming the Powerhouse: Mitochondrial Dysfunction in the Liver and Skeletal Muscle of Intrauterine Growth Restricted Fetuses. Pendleton AL; Wesolowski SR; Regnault TRH; Lynch RM; Limesand SW Front Endocrinol (Lausanne); 2021; 12():612888. PubMed ID: 34079518 [TBL] [Abstract][Full Text] [Related]
69. Substrate oxidation and ATP supply in AS-30D hepatoma cells. Rodríguez-Enríquez S; Torres-Márquez ME; Moreno-Sánchez R Arch Biochem Biophys; 2000 Mar; 375(1):21-30. PubMed ID: 10683245 [TBL] [Abstract][Full Text] [Related]
70. An acetyl group deficit limits mitochondrial ATP production at the onset of exercise. Greenhaff PL; Campbell-O'Sullivan SP; Constantin-Teodosiu D; Poucher SM; Roberts PA; Timmons JA Biochem Soc Trans; 2002 Apr; 30(2):275-80. PubMed ID: 12023864 [TBL] [Abstract][Full Text] [Related]
71. Skeletal muscle mitochondria of NDUFS4-/- mice display normal maximal pyruvate oxidation and ATP production. Alam MT; Manjeri GR; Rodenburg RJ; Smeitink JA; Notebaart RA; Huynen M; Willems PH; Koopman WJ Biochim Biophys Acta; 2015; 1847(6-7):526-33. PubMed ID: 25687896 [TBL] [Abstract][Full Text] [Related]
72. Effects of Early Resveratrol Intervention on Skeletal Muscle Mitochondrial Function and Redox Status in Neonatal Piglets with or without Intrauterine Growth Retardation. Cheng K; Wang T; Li S; Song Z; Zhang H; Zhang L; Wang T Oxid Med Cell Longev; 2020; 2020():4858975. PubMed ID: 32566083 [TBL] [Abstract][Full Text] [Related]
73. Neonatal exendin-4 prevents the development of diabetes in the intrauterine growth retarded rat. Stoffers DA; Desai BM; DeLeon DD; Simmons RA Diabetes; 2003 Mar; 52(3):734-40. PubMed ID: 12606515 [TBL] [Abstract][Full Text] [Related]
74. Glucose utilization by skeletal muscles in vivo in experimental hyperthyroidism in the rat. Sugden MC; Liu YL; Holness MJ Biochem J; 1990 Oct; 271(2):421-5. PubMed ID: 2241923 [TBL] [Abstract][Full Text] [Related]
75. Alpha-lipoic acid inhibits glycogen synthesis in rat soleus muscle via its oxidative activity and the uncoupling of mitochondria. Dicter N; Madar Z; Tirosh O J Nutr; 2002 Oct; 132(10):3001-6. PubMed ID: 12368386 [TBL] [Abstract][Full Text] [Related]
76. Adaptation of mitochondrial ATP production in human skeletal muscle to endurance training and detraining. Wibom R; Hultman E; Johansson M; Matherei K; Constantin-Teodosiu D; Schantz PG J Appl Physiol (1985); 1992 Nov; 73(5):2004-10. PubMed ID: 1474078 [TBL] [Abstract][Full Text] [Related]
77. Oxidative properties of swollen rat liver mitochondria. Matlib MA; Srere PA Arch Biochem Biophys; 1976 Jun; 174(2):705-12. PubMed ID: 180903 [No Abstract] [Full Text] [Related]
78. Myocardial macronutrient transporter adaptations in the adult pregestational female intrauterine and postnatal growth-restricted offspring. Abbasi A; Thamotharan M; Shin BC; Jordan MC; Roos KP; Stahl A; Devaskar SU Am J Physiol Endocrinol Metab; 2012 Jun; 302(11):E1352-62. PubMed ID: 22338075 [TBL] [Abstract][Full Text] [Related]
79. [Vitamin P (vegetable polyphenol), its chemical nature and its mechanism of physiological action]. Chamraï E J Physiol (Paris); 1969; 61(2):69-83. PubMed ID: 4323491 [No Abstract] [Full Text] [Related]
80. Effect of physical training on mitochondrial function in skeletal muscle of normal and diabetic rats. el Midaoui A; Tancrède G; Nadeau A Metabolism; 1996 Jul; 45(7):810-6. PubMed ID: 8692013 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]