BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 12637672)

  • 1. Ultrahigh-density nanowire lattices and circuits.
    Melosh NA; Boukai A; Diana F; Gerardot B; Badolato A; Petroff PM; Heath JR
    Science; 2003 Apr; 300(5616):112-5. PubMed ID: 12637672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three dimensional architectures of ultra-high density semiconducting nanowires deposited on chip.
    Ryan KM; Erts D; Olin H; Morris MA; Holmes JD
    J Am Chem Soc; 2003 May; 125(20):6284-8. PubMed ID: 12785861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superlattice nanowire pattern transfer (SNAP).
    Heath JR
    Acc Chem Res; 2008 Dec; 41(12):1609-17. PubMed ID: 18598059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-organized magnetic nanowire arrays based on alumina and titania templates.
    Prida VM; Pirota KR; Navas D; Asenjo A; Hernández-Vélez M; Vázquez M
    J Nanosci Nanotechnol; 2007 Jan; 7(1):272-85. PubMed ID: 17455492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bridging dimensions: demultiplexing ultrahigh-density nanowire circuits.
    Beckman R; Johnston-Halperin E; Luo Y; Green JE; Heath JR
    Science; 2005 Oct; 310(5747):465-8. PubMed ID: 16195426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Density-controlled growth of aligned ZnO nanowires sharing a common contact: a simple, low-cost, and mask-free technique for large-scale applications.
    Wang X; Song J; Summers CJ; Ryou JH; Li P; Dupuis RD; Wang ZL
    J Phys Chem B; 2006 Apr; 110(15):7720-4. PubMed ID: 16610866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-quality ZnO nanowire arrays directly fabricated from photoresists.
    Cheng C; Lei M; Feng L; Wong TL; Ho KM; Fung KK; Loy MM; Yu D; Wang N
    ACS Nano; 2009 Jan; 3(1):53-8. PubMed ID: 19206248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanowires as building blocks for self-assembling logic and memory circuits.
    Kovtyukhova NI; Mallouk TE
    Chemistry; 2002 Oct; 8(19):4354-63. PubMed ID: 12355523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sub-100 nm silicon nanowires by laser interference lithography and metal-assisted etching.
    de Boor J; Geyer N; Wittemann JV; Gösele U; Schmidt V
    Nanotechnology; 2010 Mar; 21(9):095302. PubMed ID: 20110585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal nanowire arrays by electrodeposition.
    Walter EC; Zach MP; Favier F; Murray BJ; Inazu K; Hemminger JC; Penner RM
    Chemphyschem; 2003 Feb; 4(2):131-8. PubMed ID: 12619411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical trapping and integration of semiconductor nanowire assemblies in water.
    Pauzauskie PJ; Radenovic A; Trepagnier E; Shroff H; Yang P; Liphardt J
    Nat Mater; 2006 Feb; 5(2):97-101. PubMed ID: 16429143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical properties of ultrahigh-strength gold nanowires.
    Wu B; Heidelberg A; Boland JJ
    Nat Mater; 2005 Jul; 4(7):525-9. PubMed ID: 15937490
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures.
    Wu Y; Xiang J; Yang C; Lu W; Lieber CM
    Nature; 2004 Jul; 430(6995):61-5. PubMed ID: 15229596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of TiO2 nanowire gas nanosensor by AFM anode oxidation.
    Li Z; Wu M; Liu T; Wu C; Jiao Z; Zhao B
    Ultramicroscopy; 2008 Sep; 108(10):1334-7. PubMed ID: 18571853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High density germanium nanowire assemblies: contact challenges and electrical characterization.
    Erts D; Polyakov B; Daly B; Morris MA; Ellingboe S; Boland J; Holmes JD
    J Phys Chem B; 2006 Jan; 110(2):820-6. PubMed ID: 16471609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and dispersion of isolated high aspect ratio gold nanowires.
    Wu B; Boland JJ
    J Colloid Interface Sci; 2006 Nov; 303(2):611-6. PubMed ID: 16949091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Room-temperature ultraviolet nanowire nanolasers.
    Huang MH; Mao S; Feick H; Yan H; Wu Y; Kind H; Weber E; Russo R; Yang P
    Science; 2001 Jun; 292(5523):1897-9. PubMed ID: 11397941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species.
    Patolsky F; Zheng G; Lieber CM
    Nat Protoc; 2006; 1(4):1711-24. PubMed ID: 17487154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strain-controlled growth of nanowires within thin-film cracks.
    Adelung R; Aktas OC; Franc J; Biswas A; Kunz R; Elbahri M; Kanzow J; Schürmann U; Faupel F
    Nat Mater; 2004 Jun; 3(6):375-9. PubMed ID: 15133505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlled self-assembly of functional metal octaethylporphyrin 1 D nanowires by solution-phase precipitative method.
    So MH; Roy VA; Xu ZX; Chui SS; Yuen MY; Ho CM; Che CM
    Chem Asian J; 2008 Nov; 3(11):1968-78. PubMed ID: 18767102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.