These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 12638742)

  • 1. Analysis of river pollution data from low-flow period by means of multivariate techniques: a case study from the oil-shale industry region, northeastern Estonia.
    Truu J; Heinaru E; Talpsep E; Heinaru A
    Environ Sci Pollut Res Int; 2002; Spec No 1():8-14. PubMed ID: 12638742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The toxicity and fate of phenolic pollutants in the contaminated soils associated with the oil-shale industry.
    Kahru A; Maloverjan A; Sillak H; Põllumaa L
    Environ Sci Pollut Res Int; 2002; Spec No 1():27-33. PubMed ID: 12638745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Levels of benzo(a)pyrene in oil shale industry wastes, some bodies of water in the Estonian S.S.R. and in water organisms.
    Veldre IA; Itra AR; Paalme LP
    Environ Health Perspect; 1979 Jun; 30():211-6. PubMed ID: 571803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environmental risks and problems of the optimal management of an oil shale semi-coke and ash landfill in Kohtla-Järve, Estonia.
    Vallner L; Gavrilova O; Vilu R
    Sci Total Environ; 2015 Aug; 524-525():400-15. PubMed ID: 25930241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of the environmental hazard caused by the oil shale industry solid waste.
    Põllumaa L; Maloveryan A; Trapido M; Sillak H; Kahru A
    Altern Lab Anim; 2001; 29(3):259-67. PubMed ID: 11387023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Distribution of various polycyclic aromatic hydrocarbons in reservoir water of Estonia].
    Veldre IA; Itra AR; Paal'me LP; Urbas ER
    Eksp Onkol; 1985; 7(2):71-3. PubMed ID: 4006850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Culture and biodegradation performance for phenol-degrading bacterium in high phenol concentration].
    Lü RH; Fu Q
    Huan Jing Ke Xue; 2005 Sep; 26(5):147-51. PubMed ID: 16366488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomarkers of effects of hypoxia and oil-shale contaminated sediments in laboratory-exposed gibel carp (Carassius auratus gibelio).
    Kreitsberg R; Baršienė J; Freiberg R; Andreikėnaitė L; Tammaru T; Rumvolt K; Tuvikene A
    Ecotoxicol Environ Saf; 2013 Dec; 98():227-35. PubMed ID: 24018143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. River water quality and pollution sources in the Pearl River Delta, China.
    Ouyang T; Zhu Z; Kuang Y
    J Environ Monit; 2005 Jul; 7(7):664-9. PubMed ID: 15986044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of multivariate statistical techniques for the evaluation of temporal and spatial variations in water quality of the Kaduna River, Nigeria.
    Ogwueleka TC
    Environ Monit Assess; 2015 Mar; 187(3):137. PubMed ID: 25707603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of anthropogenic influences on water quality of rivers in Taihu watershed.
    Wang XL; Lu YL; Han JY; He GZ; Wang TY
    J Environ Sci (China); 2007; 19(4):475-81. PubMed ID: 17915713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of biodegradability of phenolic compounds, characteristic to wastewater of the oil-shale chemical industry, on activated sludge by oxygen uptake measurement.
    Lepik R; Tenno T
    Environ Technol; 2012; 33(1-3):329-39. PubMed ID: 22519119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The efficiency of different phenol-degrading bacteria and activated sludges in detoxification of phenolic leachates.
    Kahru A; Reiman R; Rätsep A
    Chemosphere; 1998 Jul; 37(2):301-18. PubMed ID: 9650267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aerobic biodegradation of bisphenol A in river sediment and associated bacterial community change.
    Yang Y; Wang Z; Xie S
    Sci Total Environ; 2014 Feb; 470-471():1184-8. PubMed ID: 24246941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of the intrinsic bioremediation capacity of an eutrophic river sediment polluted by discharging chlorinated aliphatic hydrocarbons: a compound-specific isotope approach.
    Kuhn TK; Hamonts K; Dijk JA; Kalka H; Stichler W; Springael D; Dejonghe W; Meckenstock RU
    Environ Sci Technol; 2009 Jul; 43(14):5263-9. PubMed ID: 19708351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vinasse biodegradation by Phanerochaete chrysosporium.
    Potentini MF; Rodriguez-Malaver AJ
    J Environ Biol; 2006 Oct; 27(4):661-5. PubMed ID: 17405327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Residents' Self-Reported Health Effects and Annoyance in Relation to Air Pollution Exposure in an Industrial Area in Eastern-Estonia.
    Orru H; Idavain J; Pindus M; Orru K; Kesanurm K; Lang A; Tomasova J
    Int J Environ Res Public Health; 2018 Feb; 15(2):. PubMed ID: 29393920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradation and toxicity of wastewater from industry producing mineral fibres for thermal insulation.
    Tisler T; Zagorc-Koncan J; Ros M; Cotman M
    Chemosphere; 1999 Mar; 38(6):1347-52. PubMed ID: 10070723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organic priority substances and microbial processes in river sediments subject to contrasting hydrological conditions.
    Zoppini A; Ademollo N; Amalfitano S; Casella P; Patrolecco L; Polesello S
    Sci Total Environ; 2014 Jun; 484():74-83. PubMed ID: 24686147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advanced oxidation treatment of physico-chemically pre-treated olive mill industry effluent.
    Gomec CY; Erdim E; Turan I; Aydin AF; Ozturk I
    J Environ Sci Health B; 2007 Aug; 42(6):741-7. PubMed ID: 17701710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.