These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 12638868)

  • 1. Colloidal dynamics in polymer solutions: optical two-point microrheology measurements.
    Starrs L; Bartlett P
    Faraday Discuss; 2003; 123():323-34; discussion 401-21. PubMed ID: 12638868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-point microrheology and the electrostatic analogy.
    Levine AJ; Lubensky TC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jan; 65(1 Pt 1):011501. PubMed ID: 11800698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-point active microrheology in a viscous medium exploiting a motional resonance excited in dual-trap optical tweezers.
    Paul S; Kumar R; Banerjee A
    Phys Rev E; 2018 Apr; 97(4-1):042606. PubMed ID: 29758730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microrheology of solutions of semiflexible biopolymer filaments using laser tweezers interferometry.
    Addas KM; Schmidt CF; Tang JX
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Aug; 70(2 Pt 1):021503. PubMed ID: 15447492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-bead microrheology: modeling protocols.
    Hohenegger C; Forest MG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 1):031501. PubMed ID: 18851042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlated fluctuations of microparticles in viscoelastic solutions: quantitative measurement of material properties by microrheology in the presence of optical traps.
    Atakhorrami M; Sulkowska JI; Addas KM; Koenderink GH; Tang JX; Levine AJ; Mackintosh FC; Schmidt CF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 1):061501. PubMed ID: 16906830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of slip between a probe particle and a gel in microrheology.
    Fu HC; Shenoy VB; Powers TR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Dec; 78(6 Pt 1):061503. PubMed ID: 19256842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Active multi-point microrheology of cytoskeletal networks.
    Paust T; Neckernuss T; Mertens LK; Martin I; Beil M; Walther P; Schimmel T; Marti O
    Beilstein J Nanotechnol; 2016; 7():484-91. PubMed ID: 27335739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical tweezers based active microrheology of sodium polystyrene sulfonate (NaPSS).
    Chiang CC; Wei MT; Chen YQ; Yen PW; Huang YC; Chen JY; Lavastre O; Guillaume H; Guillaume D; Chiou A
    Opt Express; 2011 Apr; 19(9):8847-54. PubMed ID: 21643138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pair mobility functions for rigid spheres in concentrated colloidal dispersions: Force, torque, translation, and rotation.
    Zia RN; Swan JW; Su Y
    J Chem Phys; 2015 Dec; 143(22):224901. PubMed ID: 26671398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic structure of thermoreversible colloidal gels of adhesive spheres.
    Solomon MJ; Varadan P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 May; 63(5 Pt 1):051402. PubMed ID: 11414901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of bidisperse self-assembled monolayer structure on the slip boundary condition of thin polymer films.
    McGraw JD; Klos M; Bridet A; Hähl H; Paulus M; Castillo JM; Horsch M; Jacobs K
    J Chem Phys; 2017 May; 146(20):203326. PubMed ID: 28571390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Colloid dynamics in semiflexible polymer solutions.
    Huh JY; Furst EM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 1):031802. PubMed ID: 17025658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reply to "Comment on 'Monte carlo study of structural ordering in charged colloids using a long-range attractive interaction' ".
    Tata BV; Ise N
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jan; 61(1):983-5. PubMed ID: 11046357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stochastic interactions of two Brownian hard spheres in the presence of depletants.
    Karzar-Jeddi M; Tuinier R; Taniguchi T; Fan TH
    J Chem Phys; 2014 Jun; 140(21):214906. PubMed ID: 24908040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extensions of the Ferry shear wave model for active linear and nonlinear microrheology.
    Mitran SM; Forest MG; Yao L; Lindley B; Hill DB
    J Nonnewton Fluid Mech; 2008 Oct; 154(2-3):120-135. PubMed ID: 20011614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy dissipation of a Brownian particle in a viscoelastic fluid.
    Toyabe S; Sano M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 1):041403. PubMed ID: 18517613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonlinear microrheology: bulk stresses versus direct interactions.
    Squires TM
    Langmuir; 2008 Feb; 24(4):1147-59. PubMed ID: 18154310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polymer depletion interaction between two parallel repulsive walls.
    Schlesener F; Hanke A; Klimpel R; Dietrich S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Apr; 63(4 Pt 1):041803. PubMed ID: 11308870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microrheology of colloidal systems.
    Puertas AM; Voigtmann T
    J Phys Condens Matter; 2014 Jun; 26(24):243101. PubMed ID: 24848328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.