BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 12639977)

  • 1. Membrane dynamics and cell polarity: the role of sphingolipids.
    Hoekstra D; Maier O; van der Wouden JM; Slimane TA; van IJzendoorn SC
    J Lipid Res; 2003 May; 44(5):869-77. PubMed ID: 12639977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Caveolae, DIGs, and the dynamics of sphingolipid-cholesterol microdomains.
    Harder T; Simons K
    Curr Opin Cell Biol; 1997 Aug; 9(4):534-42. PubMed ID: 9261060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional rafts in cell membranes.
    Simons K; Ikonen E
    Nature; 1997 Jun; 387(6633):569-72. PubMed ID: 9177342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane domains and polarized trafficking of sphingolipids.
    Maier O; Aït Slimane T; Hoekstra D
    Semin Cell Dev Biol; 2001 Apr; 12(2):149-61. PubMed ID: 11292381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The differential miscibility of lipids as the basis for the formation of functional membrane rafts.
    Rietveld A; Simons K
    Biochim Biophys Acta; 1998 Nov; 1376(3):467-79. PubMed ID: 9805010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms and functional features of polarized membrane traffic in epithelial and hepatic cells.
    Zegers MM; Hoekstra D
    Biochem J; 1998 Dec; 336 ( Pt 2)(Pt 2):257-69. PubMed ID: 9820799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complete removal of sphingolipids from the plasma membrane disrupts cell to substratum adhesion of mouse melanoma cells.
    Hidari KIPJ ; Ichikawa S; Fujita T; Sakiyama H; Hirabayashi Y
    J Biol Chem; 1996 Jun; 271(24):14636-41. PubMed ID: 8662871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sphingolipid trafficking and protein sorting in epithelial cells.
    Aït Slimane T; Hoekstra D
    FEBS Lett; 2002 Oct; 529(1):54-9. PubMed ID: 12354613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipid mediators in membrane rafts are important determinants of human health and disease.
    Ma DW
    Appl Physiol Nutr Metab; 2007 Jun; 32(3):341-50. PubMed ID: 17510668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functions of lipid rafts in biological membranes.
    Brown DA; London E
    Annu Rev Cell Dev Biol; 1998; 14():111-36. PubMed ID: 9891780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polarized membrane traffic and cell polarity development is dependent on dihydroceramide synthase-regulated sphinganine turnover.
    Van IJzendoorn SC; Van Der Wouden JM; Liebisch G; Schmitz G; Hoekstra D
    Mol Biol Cell; 2004 Sep; 15(9):4115-24. PubMed ID: 15229289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The subapical compartment and its role in intracellular trafficking and cell polarity.
    Van IJzendoorn SC; Maier O; Van Der Wouden JM; Hoekstra D
    J Cell Physiol; 2000 Aug; 184(2):151-60. PubMed ID: 10867639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Update on lipid membrane microdomains.
    Schmitz G; Grandl M
    Curr Opin Clin Nutr Metab Care; 2008 Mar; 11(2):106-12. PubMed ID: 18301084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generation of lipid polarity in intestinal epithelial (Caco-2) cells: sphingolipid synthesis in the Golgi complex and sorting before vesicular traffic to the plasma membrane.
    van 't Hof W; van Meer G
    J Cell Biol; 1990 Sep; 111(3):977-86. PubMed ID: 2391372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sphingolipids--the enigmatic lipid class: biochemistry, physiology, and pathophysiology.
    Merrill AH; Schmelz EM; Dillehay DL; Spiegel S; Shayman JA; Schroeder JJ; Riley RT; Voss KA; Wang E
    Toxicol Appl Pharmacol; 1997 Jan; 142(1):208-25. PubMed ID: 9007051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Sphingolipids, vehicle for pathogenic agents and cause of genetic diseases].
    Fasano C; Hiol A; Miolan JP; Niel JP
    Med Sci (Paris); 2006 Apr; 22(4):411-5. PubMed ID: 16597411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduction of glycosphingolipid levels in lipid rafts affects the expression state and function of glycosylphosphatidylinositol-anchored proteins but does not impair signal transduction via the T cell receptor.
    Nagafuku M; Kabayama K; Oka D; Kato A; Tani-ichi S; Shimada Y; Ohno-Iwashita Y; Yamasaki S; Saito T; Iwabuchi K; Hamaoka T; Inokuchi J; Kosugi A
    J Biol Chem; 2003 Dec; 278(51):51920-7. PubMed ID: 14506277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sphingolipid organization in biomembranes: what physical studies of model membranes reveal.
    Brown RE
    J Cell Sci; 1998 Jan; 111 ( Pt 1)(0 1):1-9. PubMed ID: 9394007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural diversity and biological significance of glycosphingolipids in pathogenic and opportunistic fungi.
    Guimarães LL; Toledo MS; Ferreira FA; Straus AH; Takahashi HK
    Front Cell Infect Microbiol; 2014; 4():138. PubMed ID: 25309884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glycosphingolipids are not essential for formation of detergent-resistant membrane rafts in melanoma cells. methyl-beta-cyclodextrin does not affect cell surface transport of a GPI-anchored protein.
    Ostermeyer AG; Beckrich BT; Ivarson KA; Grove KE; Brown DA
    J Biol Chem; 1999 Nov; 274(48):34459-66. PubMed ID: 10567427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.