These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 12641221)
21. Peptide retention prediction applied to proteomic data analysis. Gilar M; Jaworski A; Olivova P; Gebler JC Rapid Commun Mass Spectrom; 2007; 21(17):2813-21. PubMed ID: 17663486 [TBL] [Abstract][Full Text] [Related]
22. Automated LC-LC-MS-MS platform using binary ion-exchange and gradient reversed-phase chromatography for improved proteomic analyses. Davis MT; Beierle J; Bures ET; McGinley MD; Mort J; Robinson JH; Spahr CS; Yu W; Luethy R; Patterson SD J Chromatogr B Biomed Sci Appl; 2001 Mar; 752(2):281-91. PubMed ID: 11270867 [TBL] [Abstract][Full Text] [Related]
23. Peptide Retention Time Prediction in Hydrophilic Interaction Liquid Chromatography: Data Collection Methods and Features of Additive and Sequence-Specific Models. Krokhin OV; Ezzati P; Spicer V Anal Chem; 2017 May; 89(10):5526-5533. PubMed ID: 28429592 [TBL] [Abstract][Full Text] [Related]
24. Automated 20 kpsi RPLC-MS and MS/MS with chromatographic peak capacities of 1000-1500 and capabilities in proteomics and metabolomics. Shen Y; Zhang R; Moore RJ; Kim J; Metz TO; Hixson KK; Zhao R; Livesay EA; Udseth HR; Smith RD Anal Chem; 2005 May; 77(10):3090-100. PubMed ID: 15889897 [TBL] [Abstract][Full Text] [Related]
25. Proteomic data mining using predicted peptide chromatographic retention times. Tripet B; Renuka Jayadev M; Blow D; Nguyen C; Hodges R; Cios K Int J Bioinform Res Appl; 2007; 3(4):431-45. PubMed ID: 18048310 [TBL] [Abstract][Full Text] [Related]
26. A systematical analysis of tryptic peptide identification with reverse phase liquid chromatography and electrospray ion trap mass spectrometry. Sun W; Wu S; Wang X; Zheng D; Gao Y Genomics Proteomics Bioinformatics; 2004 Aug; 2(3):174-83. PubMed ID: 15862118 [TBL] [Abstract][Full Text] [Related]
27. Prediction of peptide retention time in reversed-phase high-performance liquid chromatography. Chabanet C; Yvon M J Chromatogr; 1992 May; 599(1-2):211-25. PubMed ID: 1618991 [TBL] [Abstract][Full Text] [Related]
28. Proteomic analyses using an accurate mass and time tag strategy. Pasa-Tolić L; Masselon C; Barry RC; Shen Y; Smith RD Biotechniques; 2004 Oct; 37(4):621-4, 626-33, 636 passim. PubMed ID: 15517975 [TBL] [Abstract][Full Text] [Related]
29. Protein identification by accurate mass matrix-assisted laser desorption/ionization imaging of tryptic peptides. Schober Y; Schramm T; Spengler B; Römpp A Rapid Commun Mass Spectrom; 2011 Sep; 25(17):2475-83. PubMed ID: 21818808 [TBL] [Abstract][Full Text] [Related]
30. Integration of electrokinetic-based multidimensional separation/concentration platform with electrospray ionization-Fourier transform ion cyclotron resonance-mass spectrometry for proteome analysis of Shewanella oneidensis. Mohan D; Pasa-Tolić L; Masselon CD; Tolić N; Bogdanov B; Hixson KK; Smith RD; Lee CS Anal Chem; 2003 Sep; 75(17):4432-40. PubMed ID: 14632047 [TBL] [Abstract][Full Text] [Related]
31. Exploiting non-linear relationships between retention time and molecular structure of peptides originating from proteomes and comparing three multivariate approaches. Žuvela P; Macur K; Jay Liu J; Bączek T J Pharm Biomed Anal; 2016 Aug; 127():94-100. PubMed ID: 26856456 [TBL] [Abstract][Full Text] [Related]
32. Information-dependent LC-MS/MS acquisition with exclusion lists potentially generated on-the-fly: case study using a whole cell digest of Clostridium thermocellum. McQueen P; Spicer V; Rydzak T; Sparling R; Levin D; Wilkins JA; Krokhin O Proteomics; 2012 Apr; 12(8):1160-9. PubMed ID: 22577018 [TBL] [Abstract][Full Text] [Related]
33. Ultrasensitive proteomics using high-efficiency on-line micro-SPE-nanoLC-nanoESI MS and MS/MS. Shen Y; Tolić N; Masselon C; Pasa-Tolić L; Camp DG; Hixson KK; Zhao R; Anderson GA; Smith RD Anal Chem; 2004 Jan; 76(1):144-54. PubMed ID: 14697044 [TBL] [Abstract][Full Text] [Related]
34. Trypsin-catalyzed N-terminal labeling of peptides with stable isotope-coded affinity tags for proteome analysis. Pan Y; Ye M; Zheng H; Cheng K; Sun Z; Liu F; Liu J; Wang K; Qin H; Zou H Anal Chem; 2014 Jan; 86(2):1170-7. PubMed ID: 24354301 [TBL] [Abstract][Full Text] [Related]
35. Why less is more when generating tryptic peptides in bottom-up proteomics. Hildonen S; Halvorsen TG; Reubsaet L Proteomics; 2014 Sep; 14(17-18):2031-41. PubMed ID: 25044798 [TBL] [Abstract][Full Text] [Related]
36. Predicting retention time shifts associated with variation of the gradient slope in peptide RP-HPLC. Spicer V; Grigoryan M; Gotfrid A; Standing KG; Krokhin OV Anal Chem; 2010 Dec; 82(23):9678-85. PubMed ID: 21049933 [TBL] [Abstract][Full Text] [Related]
37. Global detection and characterization of hypothetical proteins in Shewanella oneidensis MR-1 using LC-MS based proteomics. Elias DA; Monroe ME; Marshall MJ; Romine MF; Belieav AS; Fredrickson JK; Anderson GA; Smith RD; Lipton MS Proteomics; 2005 Aug; 5(12):3120-30. PubMed ID: 16038018 [TBL] [Abstract][Full Text] [Related]
38. Informatics for peptide retention properties in proteomic LC-MS. Shinoda K; Sugimoto M; Tomita M; Ishihama Y Proteomics; 2008 Feb; 8(4):787-98. PubMed ID: 18214845 [TBL] [Abstract][Full Text] [Related]
40. Extended Range Proteomic Analysis (ERPA): a new and sensitive LC-MS platform for high sequence coverage of complex proteins with extensive post-translational modifications-comprehensive analysis of beta-casein and epidermal growth factor receptor (EGFR). Wu SL; Kim J; Hancock WS; Karger B J Proteome Res; 2005; 4(4):1155-70. PubMed ID: 16083266 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]