These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 12641237)
1. Development of a methodology based on metal-catalyzed oxidation reactions and mass spectrometry to determine the metal binding sites in copper metalloproteins. Lim J; Vachet RW Anal Chem; 2003 Mar; 75(5):1164-72. PubMed ID: 12641237 [TBL] [Abstract][Full Text] [Related]
2. Transition metal-peptide binding studied by metal-catalyzed oxidation reactions and mass spectrometry. Bridgewater JD; Lim J; Vachet RW Anal Chem; 2006 Apr; 78(7):2432-8. PubMed ID: 16579630 [TBL] [Abstract][Full Text] [Related]
3. Metal-catalyzed oxidation reactions and mass spectrometry: the roles of ascorbate and different oxidizing agents in determining Cu-protein-binding sites. Bridgewater JD; Vachet RW Anal Biochem; 2005 Jun; 341(1):122-30. PubMed ID: 15866536 [TBL] [Abstract][Full Text] [Related]
4. Using metal-catalyzed oxidation reactions and mass spectrometry to identify amino acid residues within 10 A of the metal in Cu-binding proteins. Bridgewater JD; Lim J; Vachet RW J Am Soc Mass Spectrom; 2006 Nov; 17(11):1552-9. PubMed ID: 16872838 [TBL] [Abstract][Full Text] [Related]
5. Identification of the copper(II) coordinating residues in the prion protein by metal-catalyzed oxidation mass spectrometry: evidence for multiple isomers at low copper(II) loadings. Srikanth R; Wilson J; Burns CS; Vachet RW Biochemistry; 2008 Sep; 47(35):9258-68. PubMed ID: 18690704 [TBL] [Abstract][Full Text] [Related]
6. Site-specific oxidation of angiotensin I by copper(II) and L-ascorbate: conversion of histidine residues to 2-imidazolones. Uchida K; Kawakishi S Arch Biochem Biophys; 1990 Nov; 283(1):20-6. PubMed ID: 2241171 [TBL] [Abstract][Full Text] [Related]
7. Coordination of copper(II) ions by the fragments of neuropeptide gamma containing D1, H9, H12 residues and products of copper-catalyzed oxidation. Jankowska E; Pietruszka M; Kowalik-Jankowska T Dalton Trans; 2012 Feb; 41(6):1683-94. PubMed ID: 22159001 [TBL] [Abstract][Full Text] [Related]
8. Using mass spectrometry to study copper-protein binding under native and non-native conditions: beta-2-microglobulin. Lim J; Vachet RW Anal Chem; 2004 Jul; 76(13):3498-504. PubMed ID: 15228316 [TBL] [Abstract][Full Text] [Related]
9. Using microwave-assisted metal-catalyzed oxidation reactions and mass spectrometry to increase the rate at which the copper-binding sites of a protein are determined. Bridgewater JD; Vachet RW Anal Chem; 2005 Jul; 77(14):4649-53. PubMed ID: 16013884 [TBL] [Abstract][Full Text] [Related]
10. Products of Cu(II)-catalyzed oxidation of alpha-synuclein fragments containing M1-D2 and H50 residues in the presence of hydrogen peroxide. Kowalik-Jankowska T; Rajewska A; Jankowska E; Grzonka Z Dalton Trans; 2008 Feb; (6):832-8. PubMed ID: 18239841 [TBL] [Abstract][Full Text] [Related]
11. Site-specific interactions of Cu(II) with alpha and beta-synuclein: bridging the molecular gap between metal binding and aggregation. Binolfi A; Lamberto GR; Duran R; Quintanar L; Bertoncini CW; Souza JM; Cerveñansky C; Zweckstetter M; Griesinger C; Fernández CO J Am Chem Soc; 2008 Sep; 130(35):11801-12. PubMed ID: 18693689 [TBL] [Abstract][Full Text] [Related]
12. Extensive investigations on oxidized amino acid residues in H(2)O(2)-treated Cu,Zn-SOd protein with LC-ESI-Q-TOF-MS, MS/MS for the determination of the copper-binding site. Kurahashi T; Miyazaki A; Suwan S; Isobe M J Am Chem Soc; 2001 Sep; 123(38):9268-78. PubMed ID: 11562208 [TBL] [Abstract][Full Text] [Related]
13. Distinct oxidative cleavage and modification of bovine [Cu- Zn]-SOD by an ascorbic acid/Cu(II) system: Identification of novel copper binding site on SOD molecule. Uehara H; Luo S; Aryal B; Levine RL; Rao VA Free Radic Biol Med; 2016 May; 94():161-73. PubMed ID: 26872685 [TBL] [Abstract][Full Text] [Related]
14. Chemical pathways of peptide degradation. X: effect of metal-catalyzed oxidation on the solution structure of a histidine-containing peptide fragment of human relaxin. Khossravi M; Borchardt RT Pharm Res; 2000 Jul; 17(7):851-8. PubMed ID: 10990205 [TBL] [Abstract][Full Text] [Related]
15. Metal-catalyzed oxidation of brain-derived neurotrophic factor (BDNF): selectivity and conformational consequences of histidine modification. Jensen JL; Kuczera K; Roy S; Schöneich C Cell Mol Biol (Noisy-le-grand); 2000 May; 46(3):685-96. PubMed ID: 10872755 [TBL] [Abstract][Full Text] [Related]
16. Coordination abilities of a fragment containing D1 and H12 residues of neuropeptide gamma and products of metal-catalyzed oxidation. Kowalik-Jankowska T; Jankowska E; Kasprzykowski F Inorg Chem; 2010 Mar; 49(5):2182-92. PubMed ID: 20121248 [TBL] [Abstract][Full Text] [Related]
17. Complexation abilities of neuropeptide gamma toward copper(II) ions and products of metal-catalyzed oxidation. Pietruszka M; Jankowska E; Kowalik-Jankowska T; Szewczuk Z; Smużyńska M Inorg Chem; 2011 Aug; 50(16):7489-99. PubMed ID: 21770367 [TBL] [Abstract][Full Text] [Related]
18. Metal ions and intrinsically disordered proteins and peptides: from Cu/Zn amyloid-β to general principles. Faller P; Hureau C; La Penna G Acc Chem Res; 2014 Aug; 47(8):2252-9. PubMed ID: 24871565 [TBL] [Abstract][Full Text] [Related]
19. Incorporating electron-transfer functionality into synthetic metalloproteins from the bottom-up. Hong J; Kharenko OA; Ogawa MY Inorg Chem; 2006 Dec; 45(25):9974-84. PubMed ID: 17140193 [TBL] [Abstract][Full Text] [Related]
20. Insights into the Molybdenum/Copper Heterometallic Cluster Assembly in the Orange Protein: Probing Intermolecular Interactions with an Artificial Metal-Binding ATCUN Tag. Maiti BK; Almeida RM; Maia LB; Moura I; Moura JJG Inorg Chem; 2017 Aug; 56(15):8900-8911. PubMed ID: 28742344 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]