These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 12641287)
1. Direct enzyme adsorption from an unclarified microbial feedstock using suspended bed chromatography. Ling TC; Lyddiatt A; Carmichael I; Purdom G; Hathi P; Levison PR J Chromatogr A; 2003 Mar; 989(1):109-18. PubMed ID: 12641287 [TBL] [Abstract][Full Text] [Related]
2. Suspended bed chromatography, a new approach in downstream processing. Levison PR; Hopkins AK; Hathi P; Badger SE; Mann F; Dickson N; Purdom G J Chromatogr A; 2000 Aug; 890(1):45-51. PubMed ID: 10976793 [TBL] [Abstract][Full Text] [Related]
3. Preparation and evaluation of polymer-coated adsorbents for the expanded bed recovery of protein products from particulate feedstocks. Jahanshahi M; Partida-Martinez L; Hajizadeh S J Chromatogr A; 2008 Aug; 1203(1):13-20. PubMed ID: 18656881 [TBL] [Abstract][Full Text] [Related]
4. Operational intensification by direct product sequestration from cell disruptates: application of a pellicular adsorbent in a mechanically integrated disruption-fluidised bed adsorption process. Jahanshahi M; Sun Y; Santos E; Pacek A; Teixera Franco T; Nienow A; Lyddiatt A Biotechnol Bioeng; 2002 Oct; 80(2):201-12. PubMed ID: 12209776 [TBL] [Abstract][Full Text] [Related]
5. Process intensification of fluidized bed dye-ligand adsorption of G3PDH from unclarified disrupted yeast: a case study of the performance of a high-density steel-agarose pellicular adsorbent. Ling TC; Lyddiatt A Protein Expr Purif; 2005 Jul; 42(1):160-5. PubMed ID: 15939302 [TBL] [Abstract][Full Text] [Related]
6. Direct process integration of cell disruption and fluidised bed adsorption in the recovery of labile microbial enzymes. Bierau H; Hinton RJ; Lyddiatt A Bioseparation; 2001; 10(1-3):73-85. PubMed ID: 11787801 [TBL] [Abstract][Full Text] [Related]
7. Production, recovery and purification of a recombinant β-galactosidase by expanded bed anion exchange adsorption. Boeris V; Balce I; Vennapusa RR; Arévalo Rodríguez M; Picó G; Lahore MF J Chromatogr B Analyt Technol Biomed Life Sci; 2012 Jul; 900():32-7. PubMed ID: 22683026 [TBL] [Abstract][Full Text] [Related]
8. Performance comparison of suspended bed and batch contactor chromatography. Quiñones-García I; Rayner I; Levison PR; Dickson N; Purdom G J Chromatogr A; 2001 Jan; 908(1-2):169-78. PubMed ID: 11218119 [TBL] [Abstract][Full Text] [Related]
9. Integration of mechanical cell disruption and fluidised bed recovery of G3PDH from unclarified disrupted yeast: a comparative study of the performance of unshielded and polymer shielded dye-ligand chromatography systems. Ling TC; Lyddiatt A J Biotechnol; 2005 Oct; 119(4):436-48. PubMed ID: 16054721 [TBL] [Abstract][Full Text] [Related]
10. Influence of the extent of disruption of Bakers' yeast on protein adsorption in expanded beds. Balasundaram B; Harrison ST J Biotechnol; 2008 Feb; 133(3):360-9. PubMed ID: 17933410 [TBL] [Abstract][Full Text] [Related]
11. Minimising biomass/adsorbent interactions in expanded bed adsorption processes: a methodological design approach. Lin DQ; Fernández-Lahore HM; Kula MR; Thömmes J Bioseparation; 2001; 10(1-3):7-19. PubMed ID: 11787800 [TBL] [Abstract][Full Text] [Related]
12. Pilot scale recovery of monoclonal antibodies by expanded bed ion exchange adsorption. Ameskamp N; Priesner C; Lehmann J; Lütkemeyer D Bioseparation; 1999; 8(1-5):169-88. PubMed ID: 10734569 [TBL] [Abstract][Full Text] [Related]
13. The direct recovery of recombinant hepatitis B core antigen from disruptate derived from continuous-flow bead milling. Ho CW; Tan WS; Kamaruddin S; Ling TC; Tey BT Biotechnol Appl Biochem; 2008 May; 50(Pt 1):49-59. PubMed ID: 17760564 [TBL] [Abstract][Full Text] [Related]
14. Influence of column design on process-scale ion-exchange chromatography. Levison PR; Hopkins AK; Hathi P J Chromatogr A; 1999 Dec; 865(1-2):3-12. PubMed ID: 10674926 [TBL] [Abstract][Full Text] [Related]
15. Purification of filamentous bacteriophage M13 by expanded bed anion exchange chromatography. Ling TC; Loong CK; Tan WS; Tey BT; Abdullah WM; Ariff A J Microbiol; 2004 Sep; 42(3):228-32. PubMed ID: 15459653 [TBL] [Abstract][Full Text] [Related]
16. Endostatin capture from Pichia pastoris culture in a fluidized bed. From on-chip process optimization to application. Shiloach J; Santambien P; Trinh L; Schapman A; Boschetti E J Chromatogr B Analyt Technol Biomed Life Sci; 2003 Jun; 790(1-2):327-36. PubMed ID: 12767341 [TBL] [Abstract][Full Text] [Related]
17. Capture of a recombinant protein from unclarified canola extract using streamline expanded bed anion exchange. Bai Y; Glatz CE Biotechnol Bioeng; 2003 Mar; 81(7):855-64. PubMed ID: 12557319 [TBL] [Abstract][Full Text] [Related]
18. Surface modification of chromatography adsorbents by low temperature low pressure plasma. Arpanaei A; Winther-Jensen B; Theodosiou E; Kingshott P; Hobley TJ; Thomas OR J Chromatogr A; 2010 Oct; 1217(44):6905-16. PubMed ID: 20869062 [TBL] [Abstract][Full Text] [Related]
19. Preparation and use of ion-exchange chromatographic supports based on perfluoropolymers. McCreath GE; Owen RO; Nash DC; Chase HA J Chromatogr A; 1997 Jun; 773(1-2):73-83. PubMed ID: 9228792 [TBL] [Abstract][Full Text] [Related]
20. Ion exchange purification of G6PDH from unclarified yeast cell homogenates using expanded bed adsorption. Chang YK; Chase HA Biotechnol Bioeng; 1996 Jan; 49(2):204-16. PubMed ID: 18623570 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]