These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 12641706)

  • 1. Age, lens transmittance, and the possible effects of light on melatonin suppression.
    Charman WN
    Ophthalmic Physiol Opt; 2003 Mar; 23(2):181-7. PubMed ID: 12641706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Circadian photoreception: ageing and the eye's important role in systemic health.
    Turner PL; Mainster MA
    Br J Ophthalmol; 2008 Nov; 92(11):1439-44. PubMed ID: 18757473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Short wavelength light filtering by the natural human lens and IOLs -- implications for entrainment of circadian rhythm.
    Brøndsted AE; Lundeman JH; Kessel L
    Acta Ophthalmol; 2013 Feb; 91(1):52-7. PubMed ID: 22136468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystalline lens transmittance spectra and pupil sizes as factors affecting light-induced melatonin suppression in children and adults.
    Eto T; Ohashi M; Nagata K; Shin N; Motomura Y; Higuchi S
    Ophthalmic Physiol Opt; 2021 Jul; 41(4):900-910. PubMed ID: 33772847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Violet and blue light blocking intraocular lenses: photoprotection versus photoreception.
    Mainster MA
    Br J Ophthalmol; 2006 Jun; 90(6):784-92. PubMed ID: 16714268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of aging on lens transmittance and retinal input to the suprachiasmatic nucleus in golden hamsters.
    Zhang Y; Brainard GC; Zee PC; Pinto LH; Takahashi JS; Turek FW
    Neurosci Lett; 1998 Dec; 258(3):167-70. PubMed ID: 9885957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aging of non-visual spectral sensitivity to light in humans: compensatory mechanisms?
    Najjar RP; Chiquet C; Teikari P; Cornut PL; Claustrat B; Denis P; Cooper HM; Gronfier C
    PLoS One; 2014; 9(1):e85837. PubMed ID: 24465738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nasal versus temporal illumination of the human retina: effects on core body temperature, melatonin, and circadian phase.
    Rüger M; Gordijn MC; Beersma DG; de Vries B; Daan S
    J Biol Rhythms; 2005 Feb; 20(1):60-70. PubMed ID: 15654071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retinal melatonin is not involved in corneal mitotic rhythms in the Japanese quail: effects of formoguanamine hydrochloride and eye-lid suture.
    Oishi T; Mohri Y; Kaneko T; Sasaki M; Hattori A; Obara Y; Masuda A
    J Pineal Res; 1996 Oct; 21(3):149-54. PubMed ID: 8981259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pupillary responses to short-wavelength light are preserved in aging.
    Rukmini AV; Milea D; Aung T; Gooley JJ
    Sci Rep; 2017 Mar; 7():43832. PubMed ID: 28266650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relative effectiveness of a blue light-filtering intraocular lens for photoentrainment of the circadian rhythm.
    Patel AS; Dacey DM
    J Cataract Refract Surg; 2009 Mar; 35(3):529-39. PubMed ID: 19251148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ocular and systemic melatonin and the influence of light exposure.
    Ostrin LA
    Clin Exp Optom; 2019 Mar; 102(2):99-108. PubMed ID: 30074278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protecting the melatonin rhythm through circadian healthy light exposure.
    Bonmati-Carrion MA; Arguelles-Prieto R; Martinez-Madrid MJ; Reiter R; Hardeland R; Rol MA; Madrid JA
    Int J Mol Sci; 2014 Dec; 15(12):23448-500. PubMed ID: 25526564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Melatonin circadian rhythm in the retina of mammals.
    Tosini G
    Chronobiol Int; 2000 Sep; 17(5):599-612. PubMed ID: 11023208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo microdialysis studies of pineal and ocular melatonin rhythms in birds.
    Ebihara S; Adachi A; Hasegawa M; Nogi T; Yoshimura T; Hirunagi K
    Biol Signals; 1997; 6(4-6):233-40. PubMed ID: 9500661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Melatonin Suppression by Light in Humans Is More Sensitive Than Previously Reported.
    Vartanian GV; Li BY; Chervenak AP; Walch OJ; Pack W; Ala-Laurila P; Wong KY
    J Biol Rhythms; 2015 Aug; 30(4):351-4. PubMed ID: 26017927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Review on age-related differences in non-visual effects of light: melatonin suppression, circadian phase shift and pupillary light reflex in children to older adults.
    Eto T; Higuchi S
    J Physiol Anthropol; 2023 Jun; 42(1):11. PubMed ID: 37355647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light, dark, and melatonin: emerging evidence for the importance of melatonin in ocular physiology.
    Brennan R; Jan JE; Lyons CJ
    Eye (Lond); 2007 Jul; 21(7):901-8. PubMed ID: 17001324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Melatonin: an underappreciated player in retinal physiology and pathophysiology.
    Tosini G; Baba K; Hwang CK; Iuvone PM
    Exp Eye Res; 2012 Oct; 103():82-9. PubMed ID: 22960156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The lenticular nucleus, light, and the retina.
    Weale RA
    Exp Eye Res; 1991 Aug; 53(2):213-8. PubMed ID: 1915677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.