These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 12641753)

  • 41. Fabrication of cone-shaped boron doped diamond and gold nanoelectrodes for AFM-SECM.
    Avdic A; Lugstein A; Wu M; Gollas B; Pobelov I; Wandlowski T; Leonhardt K; Denuault G; Bertagnolli E
    Nanotechnology; 2011 Apr; 22(14):145306. PubMed ID: 21368355
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nano-patterning photosensitive polymers using local field enhancement at the end of apertureless SNOM tips.
    H'dhili F; Bachelot R; Rumyantseva A; Lerondel G; Royer P
    J Microsc; 2003 Mar; 209(Pt 3):214-22. PubMed ID: 12641765
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Air-Impregnated Nanoporous Anodic Aluminum Oxide Layers for Enhancing the Corrosion Resistance of Aluminum.
    Jeong C; Lee J; Sheppard K; Choi CH
    Langmuir; 2015 Oct; 31(40):11040-50. PubMed ID: 26393523
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nanoscale depth resolution in scanning near-field infrared microscopy.
    Wollny G; Bründermann E; Arsov Z; Quaroni L; Havenith M
    Opt Express; 2008 May; 16(10):7453-9. PubMed ID: 18545450
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Demonstration of submicron square-like silicon waveguide using optimized LOCOS process.
    Desiatov B; Goykhman I; Levy U
    Opt Express; 2010 Aug; 18(18):18592-7. PubMed ID: 20940751
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Self-aligned nanoscale SQUID on a tip.
    Finkler A; Segev Y; Myasoedov Y; Rappaport ML; Ne'eman L; Vasyukov D; Zeldov E; Huber ME; Martin J; Yacoby A
    Nano Lett; 2010 Mar; 10(3):1046-9. PubMed ID: 20131810
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nano-slit probes for near-field optical microscopy fabricated by focused ion beams.
    Danzebrink HU; Dziomba T; Sulzbach T; Ohlsson O; Lehrer C; Frey L
    J Microsc; 1999; 194(Pt 2-3):335-9. PubMed ID: 11388262
    [TBL] [Abstract][Full Text] [Related]  

  • 48. In-situ and high-resolution optical observation in local anodic oxidation process using a scanning near-field optical microscope.
    Onuki T; Tokizaki T
    Scanning; 2004; 26(5 Suppl 1):I33-7. PubMed ID: 15540810
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Gold nanocone near-field scanning optical microscopy probes.
    Fleischer M; Weber-Bargioni A; Altoe MV; Schwartzberg AM; Schuck PJ; Cabrini S; Kern DP
    ACS Nano; 2011 Apr; 5(4):2570-9. PubMed ID: 21401116
    [TBL] [Abstract][Full Text] [Related]  

  • 50. C-V measurements of micron diameter metal-oxide-semiconductor capacitors using a scanning-electron-microscope-based nanoprobe.
    Zheng T; Jia H; Wallace RM; Gnade BE
    Rev Sci Instrum; 2007 Oct; 78(10):104702. PubMed ID: 17979444
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Scanning probe microscopy installed with nanotube probes and nanotube tweezers.
    Nakayama Y
    Ultramicroscopy; 2002 May; 91(1-4):49-56. PubMed ID: 12211483
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Piezoresistor-equipped fluorescence-based cantilever probe for near-field scanning.
    Kan T; Matsumoto K; Shimoyama I
    Rev Sci Instrum; 2007 Aug; 78(8):083106. PubMed ID: 17764312
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Plasma-deposited fluorocarbon films: insulation material for microelectrodes and combined atomic force microscopy-scanning electrochemical microscopy probes.
    Wiedemair J; Balu B; Moon JS; Hess DW; Mizaikoff B; Kranz C
    Anal Chem; 2008 Jul; 80(13):5260-5. PubMed ID: 18510344
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Robust single-nanoparticle probe for contact-mode analysis and dip-pen nanolithography.
    Kim T; Myung S; Kim TH; Hong S
    Small; 2008 Aug; 4(8):1072-5. PubMed ID: 18651711
    [No Abstract]   [Full Text] [Related]  

  • 55. Mechanics of interaction and atomic-scale wear of amplitude modulation atomic force microscopy probes.
    Vahdat V; Grierson DS; Turner KT; Carpick RW
    ACS Nano; 2013 Apr; 7(4):3221-35. PubMed ID: 23506316
    [TBL] [Abstract][Full Text] [Related]  

  • 56. DC electric-field-induced DNA stretching for AFM and SNOM studies.
    Kim JM; Ohtani T; Park JY; Chang SM; Muramatsu H
    Ultramicroscopy; 2002 May; 91(1-4):139-49. PubMed ID: 12211462
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Atomic-force-microscope-compatible near-field scanning microwave microscope with separated excitation and sensing probes.
    Lai K; Ji MB; Leindecker N; Kelly MA; Shen ZX
    Rev Sci Instrum; 2007 Jun; 78(6):063702. PubMed ID: 17614611
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Near-field microscopy: from the isolated molecule to the living cell].
    Delain E; Michel D; Le Grimellec C
    Morphologie; 2000 Jun; 84(265):25-30. PubMed ID: 11048295
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Submicrometer infrared surface imaging using a scanning-probe microscope and an optical parametric oscillator laser.
    Hill GA; Rice JH; Meech SR; Craig DQ; Kuo P; Vodopyanov K; Reading M
    Opt Lett; 2009 Feb; 34(4):431-3. PubMed ID: 19373331
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Deducing structural variations of the apex of probes used in near-field optical microscopy through simultaneous measurement of shear force and evanescent intensity.
    Maheswari RU; Mononobe S; Ohtsu M
    Appl Opt; 1996 Dec; 35(34):6740-3. PubMed ID: 21151256
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.