These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 12641769)

  • 41. Near-field photonic forces.
    Nieto-Vesperinas M; Chaumet PC; Rahmani A
    Philos Trans A Math Phys Eng Sci; 2004 Apr; 362(1817):719-37. PubMed ID: 15306490
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Light focusing by slot Fabry-Perot photonic crystal nanoresonator on scanning tip.
    Wang L; Hoshino K; Zhang X
    Opt Lett; 2011 May; 36(10):1917-9. PubMed ID: 21593934
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ultrahigh interference spatial compression of light inside the subwavelength aperture of a near-field optical probe.
    Arslanov NM; Moiseev SA
    J Opt Soc Am A Opt Image Sci Vis; 2007 Mar; 24(3):831-8. PubMed ID: 17301871
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Role of interfering optical fields in the trapping and melting of gold nanorods and related clusters.
    Deng HD; Li GC; Dai QF; Ouyang M; Lan S; Gopal AV; Trofimov VA; Lysak TM
    Opt Express; 2012 May; 20(10):10963-70. PubMed ID: 22565719
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mapping magnetic near-field distributions of plasmonic nanoantennas.
    Denkova D; Verellen N; Silhanek AV; Valev VK; Van Dorpe P; Moshchalkov VV
    ACS Nano; 2013 Apr; 7(4):3168-76. PubMed ID: 23464670
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Photonic-plasmonic-coupled nanoantennas for polarization-controlled multispectral nanofocusing.
    Trevino J; Walsh GF; Pecora EF; Boriskina SV; Dal Negro L
    Opt Lett; 2013 Nov; 38(22):4861-3. PubMed ID: 24322151
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Piezoresistor-equipped fluorescence-based cantilever probe for near-field scanning.
    Kan T; Matsumoto K; Shimoyama I
    Rev Sci Instrum; 2007 Aug; 78(8):083106. PubMed ID: 17764312
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Interaction and spectral gaps of surface plasmon modes in gold nano-structures.
    Kolomenskii A; Peng S; Hembd J; Kolomenski A; Noel J; Strohaber J; Teizer W; Schuessler H
    Opt Express; 2011 Mar; 19(7):6587-98. PubMed ID: 21451686
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Characterization and fabrication of fully metal-coated scanning near-field optical microscopy SiO2 tips.
    Aeschimann L; Akiyama T; Staufer U; De Rooij NF; Thiery L; Eckert R; Heinzelmann H
    J Microsc; 2003 Mar; 209(Pt 3):182-7. PubMed ID: 12641759
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Characterization of uniformity and reproducibility of photoresist nanomasks fabricated by near-field scanning optical nanolithography.
    Kwon S; Jeong Y; Jeong S
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3647-51. PubMed ID: 17252829
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Coherent multiphoton photoelectron emission from single au nanorods: the critical role of plasmonic electric near-field enhancement.
    Grubisic A; Schweikhard V; Baker TA; Nesbitt DJ
    ACS Nano; 2013 Jan; 7(1):87-99. PubMed ID: 23194174
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A microsphere coupler for a nanowire waveguide plasmonic probe for molecular imaging.
    Heltzel A; Shi L; Howell JR
    Nanotechnology; 2011 Jan; 22(4):045203. PubMed ID: 21157015
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Probing of optical near-fields by electron Rescattering on the 1 nm scale.
    Thomas S; Krüger M; Förster M; Schenk M; Hommelhoff P
    Nano Lett; 2013 Oct; 13(10):4790-4. PubMed ID: 24032432
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Processing and characterization of gold nanoparticles for use in plasmon probe spectroscopy and microscopy of biosystems.
    Chen Y; Preece JA; Palmer RE
    Ann N Y Acad Sci; 2008; 1130():201-6. PubMed ID: 18596349
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Implementation of a short-tip tapping-mode tuning fork near-field scanning optical microscope.
    Lu NH; Huang CW; Chen CY; Yu CF; Kao TS; Fu YH; Tsai DP
    J Microsc; 2003 Mar; 209(Pt 3):205-8. PubMed ID: 12641763
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Local optical responses of plasmon resonances visualised by near-field optical imaging.
    Okamoto H; Narushima T; Nishiyama Y; Imura K
    Phys Chem Chem Phys; 2015 Mar; 17(9):6192-206. PubMed ID: 25660963
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Novel instrument for surface plasmon polariton tracking in space and time.
    Sandtke M; Engelen RJ; Schoenmaker H; Attema I; Dekker H; Cerjak I; Korterik JP; Segerink FB; Kuipers L
    Rev Sci Instrum; 2008 Jan; 79(1):013704. PubMed ID: 18248036
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Photonic-plasmonic mode coupling in on-chip integrated optoplasmonic molecules.
    Ahn W; Boriskina SV; Hong Y; Reinhard BM
    ACS Nano; 2012 Jan; 6(1):951-60. PubMed ID: 22148502
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Direct near-field optical imaging of higher order plasmonic resonances.
    Esteban R; Vogelgesang R; Dorfmüller J; Dmitriev A; Rockstuhl C; Etrich C; Kern K
    Nano Lett; 2008 Oct; 8(10):3155-9. PubMed ID: 18788785
    [TBL] [Abstract][Full Text] [Related]  

  • 60. High resolution capabilities of all-silica cantilevered probes for near-field optical microscopy.
    Descrovi E; Aeschimann L; Soboleva I; De Angelis F; Giorgis F; Di Fabrizio E
    J Nanosci Nanotechnol; 2009 Nov; 9(11):6460-4. PubMed ID: 19908549
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.