BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 12642101)

  • 1. Effects of the cowpea chlorotic mottle bromovirus beta-hexamer structure on virion assembly.
    Willits D; Zhao X; Olson N; Baker TS; Zlotnick A; Johnson JE; Douglas T; Young MJ
    Virology; 2003 Feb; 306(2):280-8. PubMed ID: 12642101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro assembly of cowpea chlorotic mottle virus from coat protein expressed in Escherichia coli and in vitro-transcribed viral cDNA.
    Zhao X; Fox JM; Olson NH; Baker TS; Young MJ
    Virology; 1995 Mar; 207(2):486-94. PubMed ID: 7886952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Packaging and structural phenotype of brome mosaic virus capsid protein with altered N-terminal β-hexamer structure.
    de Wispelaere M; Chaturvedi S; Wilkens S; Rao AL
    Virology; 2011 Oct; 419(1):17-23. PubMed ID: 21864876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of the native CCMV virion with in vitro assembled CCMV virions by cryoelectron microscopy and image reconstruction.
    Fox JM; Wang G; Speir JA; Olson NH; Johnson JE; Baker TS; Young MJ
    Virology; 1998 Apr; 244(1):212-8. PubMed ID: 9581792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deletion of highly conserved arginine-rich RNA binding motif in cowpea chlorotic mottle virus capsid protein results in virion structural alterations and RNA packaging constraints.
    Annamalai P; Apte S; Wilkens S; Rao AL
    J Virol; 2005 Mar; 79(6):3277-88. PubMed ID: 15731222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structures of the native and swollen forms of cowpea chlorotic mottle virus determined by X-ray crystallography and cryo-electron microscopy.
    Speir JA; Munshi S; Wang G; Baker TS; Johnson JE
    Structure; 1995 Jan; 3(1):63-78. PubMed ID: 7743132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of subunit hinges and molecular "switches" in the control of viral capsid polymorphism.
    Tang J; Johnson JM; Dryden KA; Young MJ; Zlotnick A; Johnson JE
    J Struct Biol; 2006 Apr; 154(1):59-67. PubMed ID: 16495083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterologous expression of the modified coat protein of Cowpea chlorotic mottle bromovirus results in the assembly of protein cages with altered architectures and function.
    Brumfield S; Willits D; Tang L; Johnson JE; Douglas T; Young M
    J Gen Virol; 2004 Apr; 85(Pt 4):1049-1053. PubMed ID: 15039547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of electrostatics in the assembly pathway of a single-stranded RNA virus.
    Garmann RF; Comas-Garcia M; Koay MS; Cornelissen JJ; Knobler CM; Gelbart WM
    J Virol; 2014 Sep; 88(18):10472-9. PubMed ID: 24965458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of a salt stable mutant of cowpea chlorotic mottle virus.
    Fox JM; Zhao X; Speir JA; Young MJ
    Virology; 1996 Aug; 222(1):115-22. PubMed ID: 8806492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The carboxy-terminal two-thirds of the cowpea chlorotic mottle bromovirus capsid protein is incapable of virion formation yet supports systemic movement.
    Schneider WL; Greene AE; Allison RF
    J Virol; 1997 Jun; 71(6):4862-5. PubMed ID: 9151887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The crystallographic structure of brome mosaic virus.
    Lucas RW; Larson SB; McPherson A
    J Mol Biol; 2002 Mar; 317(1):95-108. PubMed ID: 11916381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Symptom induction by Cowpea chlorotic mottle virus on Vigna unguiculata is determined by amino acid residue 151 in the coat protein.
    de Assis Filho FM; Paguio OR; Sherwood JL; Deom CM
    J Gen Virol; 2002 Apr; 83(Pt 4):879-883. PubMed ID: 11907338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced local symmetry interactions globally stabilize a mutant virus capsid that maintains infectivity and capsid dynamics.
    Speir JA; Bothner B; Qu C; Willits DA; Young MJ; Johnson JE
    J Virol; 2006 Apr; 80(7):3582-91. PubMed ID: 16537626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The structure of cucumber mosaic virus and comparison to cowpea chlorotic mottle virus.
    Smith TJ; Chase E; Schmidt T; Perry KL
    J Virol; 2000 Aug; 74(16):7578-86. PubMed ID: 10906212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Capsid protein gene and the type of host plant differentially modulate cell-to-cell movement of cowpea chlorotic mottle virus.
    Rao AL; Cooper B
    Virus Genes; 2006 Jun; 32(3):219-27. PubMed ID: 16732474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional analysis of brome mosaic virus coat protein RNA-interacting domains.
    Calhoun SL; Rao AL
    Arch Virol; 2008; 153(2):231-45. PubMed ID: 18066637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of a disassembly deficient mutant of cowpea chlorotic mottle virus.
    Fox JM; Albert FG; Speir JA; Young MJ
    Virology; 1997 Jan; 227(1):229-33. PubMed ID: 9007078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo particle polymorphism results from deletion of a N-terminal peptide molecular switch in brome mosaic virus capsid protein.
    Calhoun SL; Speir JA; Rao AL
    Virology; 2007 Aug; 364(2):407-21. PubMed ID: 17449079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of capsid assembly for an icosahedral plant virus.
    Zlotnick A; Aldrich R; Johnson JM; Ceres P; Young MJ
    Virology; 2000 Nov; 277(2):450-6. PubMed ID: 11080492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.