These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
25. Time resolution of the intermediate steps in the bacteriorhodopsin-linked electrogenesis. Drachev LA; Kaulen AD; Skulachev VP FEBS Lett; 1978 Mar; 87(1):161-7. PubMed ID: 24553 [No Abstract] [Full Text] [Related]
26. [Purple membranes as a model system for research on photoreception processes. I. The structure, asymmetry and dynamics of the purple membrane]. Stoilov S; Popdimitrova N; Kŭncheva M Eksp Med Morfol; 1985; 24(1):49-53. PubMed ID: 4029070 [No Abstract] [Full Text] [Related]
27. Restriction of motion of protein side chains during the photocycle of bacteriorhodopsin. Czégé J; Dér A; Zimányi L; Keszthelyi L Proc Natl Acad Sci U S A; 1982 Dec; 79(23):7273-7. PubMed ID: 6961407 [TBL] [Abstract][Full Text] [Related]
28. [Community of properties of bacterial and visual rhodopsins: light energy conversion to electric potential difference]. Bol'shakov VI; Drachev AL; Drachev LA; Kalamkarov GR; Kaulen AD Dokl Akad Nauk SSSR; 1979; 249(6):1462-6. PubMed ID: 527472 [No Abstract] [Full Text] [Related]
29. On the role of hydrogen bonds and hydrogen-bonded systems with large proton polarizability for mechanisms of proton activation and conduction in bacteriorhodopsin. Zundel G; Merz H Prog Clin Biol Res; 1984; 164():153-64. PubMed ID: 6097898 [No Abstract] [Full Text] [Related]
30. The structural basis of the functioning of bacteriorhodopsin: an overview. Ovchinnikov YA; Abdulaev NG; Feigina MY; Kiselev AV; Lobanov NA FEBS Lett; 1979 Apr; 100(2):219-24. PubMed ID: 378693 [No Abstract] [Full Text] [Related]
31. Physiological and structural investigations of bacteriorhodopsin analogs. Marcus MA; Lewis A; Crespi H Biochem Biophys Res Commun; 1977 Sep; 78(2):669-75. PubMed ID: 907704 [No Abstract] [Full Text] [Related]
32. Control of transmembrane ion fluxes to select halorhodopsin-deficient and other energy-transduction mutants of Halobacterium halobium. Spudich EN; Spudich JL Proc Natl Acad Sci U S A; 1982 Jul; 79(14):4308-12. PubMed ID: 6289299 [TBL] [Abstract][Full Text] [Related]
33. Orientation of membrane fragments by electric field. Keszthelyi L Physiologie; 1980; 17(1):19-28. PubMed ID: 6767251 [TBL] [Abstract][Full Text] [Related]
34. Photophysics of light transduction in rhodopsin and bacteriorhodopsin. Birge RR Annu Rev Biophys Bioeng; 1981; 10():315-54. PubMed ID: 7020578 [No Abstract] [Full Text] [Related]
35. Trans/13-cis isomerization is essential for both the photocycle and proton pumping of bacteriorhodopsin. Chang CH; Govindjee R; Ebrey T; Bagley KA; Dollinger G; Eisenstein L; Marque J; Roder H; Vittitow J; Fang JM Biophys J; 1985 Apr; 47(4):509-12. PubMed ID: 2985136 [TBL] [Abstract][Full Text] [Related]
36. Kinetic and spectroscopic effects of protein-chromophore electrostatic interactions in bacteriorhodopsin. Warshel A; Ottolenighi M Photochem Photobiol; 1979 Aug; 30(2):291-3. PubMed ID: 41274 [No Abstract] [Full Text] [Related]
37. A correlation between proton pumping and the bacteriorhodopsin photocycle. Li Q; Govindjee R; Ebrey TG Proc Natl Acad Sci U S A; 1984 Nov; 81(22):7079-82. PubMed ID: 6095267 [TBL] [Abstract][Full Text] [Related]
38. Surface charge changes in purple membranes and the photoreaction cycle of bacteriorhodopsin. Carmeli C; Quintanilha AT; Packer L Proc Natl Acad Sci U S A; 1980 Aug; 77(8):4707-11. PubMed ID: 6254038 [TBL] [Abstract][Full Text] [Related]
39. What does Halobacterium tell us about photoreception? Hildebrand E Biophys Struct Mech; 1977 Apr; 3(1):69-77. PubMed ID: 857951 [TBL] [Abstract][Full Text] [Related]
40. Biosynthesis of the two halobacterial light sensors P480 and sensory rhodopsin and variation in gain of their signal transduction chains. Otomo J; Marwan W; Oesterhelt D; Desel H; Uhl R J Bacteriol; 1989 Apr; 171(4):2155-9. PubMed ID: 2703468 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]