BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 12642591)

  • 1. Selective hydrolysis of triple-helical substrates by matrix metalloproteinase-2 and -9.
    Lauer-Fields JL; Sritharan T; Stack MS; Nagase H; Fields GB
    J Biol Chem; 2003 May; 278(20):18140-5. PubMed ID: 12642591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic analysis of matrix metalloproteinase activity using fluorogenic triple-helical substrates.
    Lauer-Fields JL; Broder T; Sritharan T; Chung L; Nagase H; Fields GB
    Biochemistry; 2001 May; 40(19):5795-803. PubMed ID: 11341845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrolysis of triple-helical collagen peptide models by matrix metalloproteinases.
    Lauer-Fields JL; Tuzinski KA; Shimokawa Ki; Nagase H; Fields GB
    J Biol Chem; 2000 May; 275(18):13282-90. PubMed ID: 10788434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of collagen charge clusters in the modulation of matrix metalloproteinase activity.
    Lauer JL; Bhowmick M; Tokmina-Roszyk D; Lin Y; Van Doren SR; Fields GB
    J Biol Chem; 2014 Jan; 289(4):1981-92. PubMed ID: 24297171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Triple-helical peptide analysis of collagenolytic protease activity.
    Lauer-Fields JL; Fields GB
    Biol Chem; 2002; 383(7-8):1095-105. PubMed ID: 12437092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exosite interactions impact matrix metalloproteinase collagen specificities.
    Robichaud TK; Steffensen B; Fields GB
    J Biol Chem; 2011 Oct; 286(43):37535-42. PubMed ID: 21896477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Triple-helical transition state analogues: a new class of selective matrix metalloproteinase inhibitors.
    Lauer-Fields J; Brew K; Whitehead JK; Li S; Hammer RP; Fields GB
    J Am Chem Soc; 2007 Aug; 129(34):10408-17. PubMed ID: 17672455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective modulation of matrix metalloproteinase 9 (MMP-9) functions via exosite inhibition.
    Lauer-Fields JL; Whitehead JK; Li S; Hammer RP; Brew K; Fields GB
    J Biol Chem; 2008 Jul; 283(29):20087-95. PubMed ID: 18499673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MMP-12 catalytic domain recognizes triple helical peptide models of collagen V with exosites and high activity.
    Bhaskaran R; Palmier MO; Lauer-Fields JL; Fields GB; Van Doren SR
    J Biol Chem; 2008 Aug; 283(31):21779-88. PubMed ID: 18539597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The roles of substrate thermal stability and P2 and P1' subsite identity on matrix metalloproteinase triple-helical peptidase activity and collagen specificity.
    Minond D; Lauer-Fields JL; Cudic M; Overall CM; Pei D; Brew K; Visse R; Nagase H; Fields GB
    J Biol Chem; 2006 Dec; 281(50):38302-13. PubMed ID: 17065155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of matrix metalloproteinase triple-helical peptidase activity with substrates incorporating fluorogenic L- or D-amino acids.
    Lauer-Fields JL; Kele P; Sui G; Nagase H; Leblanc RM; Fields GB
    Anal Biochem; 2003 Oct; 321(1):105-15. PubMed ID: 12963061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of MMP-2 and MMP-9 activity in vivo with a triple-helical peptide optical probe.
    Akers WJ; Xu B; Lee H; Sudlow GP; Fields GB; Achilefu S; Edwards WB
    Bioconjug Chem; 2012 Mar; 23(3):656-63. PubMed ID: 22309692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differentiation of secreted and membrane-type matrix metalloproteinase activities based on substitutions and interruptions of triple-helical sequences.
    Minond D; Lauer-Fields JL; Cudic M; Overall CM; Pei D; Brew K; Moss ML; Fields GB
    Biochemistry; 2007 Mar; 46(12):3724-33. PubMed ID: 17338550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substrate conformation modulates aggrecanase (ADAMTS-4) affinity and sequence specificity. Suggestion of a common topological specificity for functionally diverse proteases.
    Lauer-Fields JL; Minond D; Sritharan T; Kashiwagi M; Nagase H; Fields GB
    J Biol Chem; 2007 Jan; 282(1):142-50. PubMed ID: 17095512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Matrix metalloproteinase triple-helical peptidase activities are differentially regulated by substrate stability.
    Minond D; Lauer-Fields JL; Nagase H; Fields GB
    Biochemistry; 2004 Sep; 43(36):11474-81. PubMed ID: 15350133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Collagenolytic Matrix Metalloproteinase Activities toward Peptomeric Triple-Helical Substrates.
    Stawikowski MJ; Stawikowska R; Fields GB
    Biochemistry; 2015 May; 54(19):3110-21. PubMed ID: 25897652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional basis for the overlap in ligand interactions and substrate specificities of matrix metalloproteinases-9 and -2.
    Xu X; Chen Z; Wang Y; Yamada Y; Steffensen B
    Biochem J; 2005 Nov; 392(Pt 1):127-34. PubMed ID: 16008524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A unique substrate binding mode discriminates membrane type-1 matrix metalloproteinase from other matrix metalloproteinases.
    Kridel SJ; Sawai H; Ratnikov BI; Chen EI; Li W; Godzik A; Strongin AY; Smith JW
    J Biol Chem; 2002 Jun; 277(26):23788-93. PubMed ID: 11959855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of collagen binding domain residues that govern catalytic activities of matrix metalloproteinase-2 (MMP-2).
    Mikhailova M; Xu X; Robichaud TK; Pal S; Fields GB; Steffensen B
    Matrix Biol; 2012; 31(7-8):380-8. PubMed ID: 23085623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of Edman degradation sequence analysis and matrix-assisted laser desorption/ionization mass spectrometry in designing substrates for matrix metalloproteinases.
    Lauer-Fields JL; Nagase H; Fields GB
    J Chromatogr A; 2000 Aug; 890(1):117-25. PubMed ID: 10976799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.