These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 12642597)

  • 21. Homer protein increases activation of Ca2+ sparks in permeabilized skeletal muscle.
    Ward CW; Feng W; Tu J; Pessah IN; Worley PK; Schneider MF
    J Biol Chem; 2004 Feb; 279(7):5781-7. PubMed ID: 14660561
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ca2+ sparks in skeletal muscle.
    Klein MG; Schneider MF
    Prog Biophys Mol Biol; 2006 Nov; 92(3):308-32. PubMed ID: 16125755
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Resting myoplasmic free calcium in frog skeletal muscle fibers estimated with fluo-3.
    Harkins AB; Kurebayashi N; Baylor SM
    Biophys J; 1993 Aug; 65(2):865-81. PubMed ID: 8218910
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Voltage dependence of Ca2+ sparks in intact cerebral arteries.
    Jaggar JH; Stevenson AS; Nelson MT
    Am J Physiol; 1998 Jun; 274(6):C1755-61. PubMed ID: 9611142
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Control of sarcoplasmic reticulum Ca2+ release by stochastic RyR gating within a 3D model of the cardiac dyad and importance of induction decay for CICR termination.
    Cannell MB; Kong CH; Imtiaz MS; Laver DR
    Biophys J; 2013 May; 104(10):2149-59. PubMed ID: 23708355
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A calmodulin binding domain of RyR increases activation of spontaneous Ca2+ sparks in frog skeletal muscle.
    Rodney GG; Wilson GM; Schneider MF
    J Biol Chem; 2005 Mar; 280(12):11713-22. PubMed ID: 15640144
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ca2+ sparks as a plastic signal for skeletal muscle health, aging, and dystrophy.
    Weisleder N; Ma JJ
    Acta Pharmacol Sin; 2006 Jul; 27(7):791-8. PubMed ID: 16787561
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Expression of ryanodine receptor RyR3 produces Ca2+ sparks in dyspedic myotubes.
    Ward CW; Schneider MF; Castillo D; Protasi F; Wang Y; Chen SR; Allen PD
    J Physiol; 2000 May; 525 Pt 1(Pt 1):91-103. PubMed ID: 10811728
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modulation of the frequency of spontaneous sarcoplasmic reticulum Ca2+ release events (Ca2+ sparks) by myoplasmic [Mg2+] in frog skeletal muscle.
    Lacampagne A; Klein MG; Schneider MF
    J Gen Physiol; 1998 Feb; 111(2):207-24. PubMed ID: 9450940
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamics of signaling between Ca(2+) sparks and Ca(2+)- activated K(+) channels studied with a novel image-based method for direct intracellular measurement of ryanodine receptor Ca(2+) current.
    ZhuGe R; Fogarty KE; Tuft RA; Lifshitz LM; Sayar K; Walsh JV
    J Gen Physiol; 2000 Dec; 116(6):845-64. PubMed ID: 11099351
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bay K 8644 increases resting Ca2+ spark frequency in ferret ventricular myocytes independent of Ca influx: contrast with caffeine and ryanodine effects.
    Satoh H; Katoh H; Velez P; Fill M; Bers DM
    Circ Res; 1998 Dec 14-28; 83(12):1192-204. PubMed ID: 9851936
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ca2+ sparks and embers of mammalian muscle. Properties of the sources.
    Zhou J; Brum G; Gonzalez A; Launikonis BS; Stern MD; Rios E
    J Gen Physiol; 2003 Jul; 122(1):95-114. PubMed ID: 12835473
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Altered sarcoplasmic reticulum calcium transport in the presence of the heavy metal chelator TPEN.
    Sztretye M; Almássy J; Deli T; Szentesi P; Jung C; Dienes B; Simut CA; Niggli E; Jona I; Csernoch L
    Cell Calcium; 2009; 46(5-6):347-55. PubMed ID: 19900703
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cytosolic Ca²⁺ buffering determines the intra-SR Ca²⁺ concentration at which cardiac Ca²⁺ sparks terminate.
    Bovo E; Mazurek SR; Fill M; Zima AV
    Cell Calcium; 2015 Sep; 58(3):246-53. PubMed ID: 26095947
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recovery of cardiac calcium release is controlled by sarcoplasmic reticulum refilling and ryanodine receptor sensitivity.
    Ramay HR; Liu OZ; Sobie EA
    Cardiovasc Res; 2011 Sep; 91(4):598-605. PubMed ID: 21613275
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Frequency and release flux of calcium sparks in rat cardiac myocytes: a relation to RYR gating.
    Zahradníková A; Valent I; Zahradník I
    J Gen Physiol; 2010 Jul; 136(1):101-16. PubMed ID: 20548054
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Termination of cardiac Ca(2+) sparks: an investigative mathematical model of calcium-induced calcium release.
    Sobie EA; Dilly KW; dos Santos Cruz J; Lederer WJ; Jafri MS
    Biophys J; 2002 Jul; 83(1):59-78. PubMed ID: 12080100
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Local calcium release in mammalian skeletal muscle.
    Shirokova N; García J; Ríos E
    J Physiol; 1998 Oct; 512 ( Pt 2)(Pt 2):377-84. PubMed ID: 9763628
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of the myoplasmic calcium transient elicited by an action potential in intact fibres of mdx and normal mice.
    Hollingworth S; Zeiger U; Baylor SM
    J Physiol; 2008 Nov; 586(21):5063-75. PubMed ID: 18772198
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mitochondrial redox state and Ca2+ sparks in permeabilized mammalian skeletal muscle.
    Isaeva EV; Shkryl VM; Shirokova N
    J Physiol; 2005 Jun; 565(Pt 3):855-72. PubMed ID: 15845582
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.