These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 12642664)

  • 21. Relaxation filtered hyperfine (REFINE) spectroscopy: a novel tool for studying overlapping biological electron paramagnetic resonance signals applied to mitochondrial complex I.
    Maly T; MacMillan F; Zwicker K; Kashani-Poor N; Brandt U; Prisner TF
    Biochemistry; 2004 Apr; 43(13):3969-78. PubMed ID: 15049704
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electron-paramagnetic-resonance spectroscopy in biochemistry: past, present and future.
    Beinert H
    Biochem Soc Trans; 1985 Jun; 13(3):542-7. PubMed ID: 2993060
    [No Abstract]   [Full Text] [Related]  

  • 23. Suppression of electron spin-echo envelope modulation peaks in double quantum coherence electron spin resonance.
    Bonora M; Becker J; Saxena S
    J Magn Reson; 2004 Oct; 170(2):278-83. PubMed ID: 15388091
    [TBL] [Abstract][Full Text] [Related]  

  • 24. NMR spectroscopy in bioinorganic chemistry.
    Donghi D; Johannsen S; Sigel RK; Freisinger E
    Chimia (Aarau); 2012; 66(10):791-7. PubMed ID: 23146267
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vanadyl(IV) electron nuclear double resonance/electron spin echo envelope modulation spin probes.
    Chasteen ND
    Methods Enzymol; 1993; 227():232-44. PubMed ID: 8255227
    [No Abstract]   [Full Text] [Related]  

  • 26. Evaluation of nitrogen nuclear hyperfine and quadrupole coupling parameters for the proximal imidazole in myoglobin-azide, -cyanide, and -mercaptoethanol complexes by electron spin echo envelope modulation spectroscopy.
    Magliozzo RS; Peisach J
    Biochemistry; 1993 Aug; 32(33):8446-56. PubMed ID: 8395204
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Principles and applications of ENDOR spectroscopy for structure determination in solution and disordered matrices.
    Murphy DM; Farley RD
    Chem Soc Rev; 2006 Mar; 35(3):249-68. PubMed ID: 16505919
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Two-dimensional nuclear-Zeeman-resolved electron spin echo envelope modulation (NZ-ESEEM) spectroscopy.
    Willer M; Granwehr J; Forrer J; Schweiger A
    J Magn Reson; 1998 Jul; 133(1):46-52. PubMed ID: 9654467
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 14N electron spin-echo envelope modulation of the S = 3/2 spin system of the Azotobacter vinelandii nitrogenase iron-molybdenum cofactor.
    Lee HI; Thrasher KS; Dean DR; Newton WE; Hoffman BM
    Biochemistry; 1998 Sep; 37(38):13370-8. PubMed ID: 9748344
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mimicking biological electron transfer and oxygen activation involving iron and copper proteins: a bio(in)organic supramolecular approach.
    Feiters MC
    Met Ions Biol Syst; 2001; 38():461-655. PubMed ID: 11219019
    [No Abstract]   [Full Text] [Related]  

  • 31. Iron-sulfur clusters: nature's modular, multipurpose structures.
    Beinert H; Holm RH; Münck E
    Science; 1997 Aug; 277(5326):653-9. PubMed ID: 9235882
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electron spin echo envelope modulation spectroscopy supports the suggested coordination of two histidine ligands to the Rieske Fe-S centers of the cytochrome b6f complex of spinach and the cytochrome bc1 complexes of Rhodospirillum rubrum, Rhodobacter sphaeroides R-26, and bovine heart mitochondria.
    Britt RD; Sauer K; Klein MP; Knaff DB; Kriauciunas A; Yu CA; Yu L; Malkin R
    Biochemistry; 1991 Feb; 30(7):1892-901. PubMed ID: 1847076
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The strength of EPR and ENDOR techniques in revealing structure-function relationships in metalloproteins.
    Van Doorslaer S; Vinck E
    Phys Chem Chem Phys; 2007 Sep; 9(33):4620-38. PubMed ID: 17700864
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pyruvate formate-lyase activating enzyme: elucidation of a novel mechanism for glycyl radical formation.
    Buis JM; Broderick JB
    Arch Biochem Biophys; 2005 Jan; 433(1):288-96. PubMed ID: 15581584
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electron spin echo envelope modulation of molecular motions of deuterium nuclei.
    Syryamina VN; Maryasov AG; Bowman MK; Dzuba SA
    J Magn Reson; 2015 Dec; 261():169-74. PubMed ID: 26583529
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recent advances in bioinorganic spectroscopy.
    Lehnert N; George SD; Solomon EI
    Curr Opin Chem Biol; 2001 Apr; 5(2):176-87. PubMed ID: 11282345
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A new method to determine the structure of the metal environment in metalloproteins: investigation of the prion protein octapeptide repeat Cu(2+) complex.
    Mentler M; Weiss A; Grantner K; del Pino P; Deluca D; Fiori S; Renner C; Klaucke WM; Moroder L; Bertsch U; Kretzschmar HA; Tavan P; Parak FG
    Eur Biophys J; 2005 Mar; 34(2):97-112. PubMed ID: 15452673
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electron-spin-resonance/electron-paramagnetic-resonance spectroscopy of iron-sulphur enzymes.
    Cammack R; Patil DS; Fernandez VM
    Biochem Soc Trans; 1985 Jun; 13(3):572-8. PubMed ID: 2993064
    [No Abstract]   [Full Text] [Related]  

  • 39. Atomic and nuclear probes of enzyme systems.
    Cohn M
    Annu Rev Biophys Biomol Struct; 1992; 21():1-24. PubMed ID: 1326352
    [No Abstract]   [Full Text] [Related]  

  • 40. Determining α-helical and β-sheet secondary structures via pulsed electron spin resonance spectroscopy.
    Zhou A; Abu-Baker S; Sahu ID; Liu L; McCarrick RM; Dabney-Smith C; Lorigan GA
    Biochemistry; 2012 Sep; 51(38):7417-9. PubMed ID: 22966895
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.