BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 12643470)

  • 1. TGF-betal/Smad signaling in prostate cancer.
    Bello-DeOcampo D; Tindall DJ
    Curr Drug Targets; 2003 Apr; 4(3):197-207. PubMed ID: 12643470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Loss of c-myc repression coincides with ovarian cancer resistance to transforming growth factor beta growth arrest independent of transforming growth factor beta/Smad signaling.
    Baldwin RL; Tran H; Karlan BY
    Cancer Res; 2003 Mar; 63(6):1413-9. PubMed ID: 12649207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transforming growth factor-beta signaling through the Smad pathway: role in extracellular matrix gene expression and regulation.
    Verrecchia F; Mauviel A
    J Invest Dermatol; 2002 Feb; 118(2):211-5. PubMed ID: 11841535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repression of Smad-dependent transforming growth factor-beta signaling by Epstein-Barr virus latent membrane protein 1 through nuclear factor-kappaB.
    Mori N; Morishita M; Tsukazaki T; Yamamoto N
    Int J Cancer; 2003 Jul; 105(5):661-8. PubMed ID: 12740915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transforming growth factor-beta1 activates interleukin-6 expression in prostate cancer cells through the synergistic collaboration of the Smad2, p38-NF-kappaB, JNK, and Ras signaling pathways.
    Park JI; Lee MG; Cho K; Park BJ; Chae KS; Byun DS; Ryu BK; Park YK; Chi SG
    Oncogene; 2003 Jul; 22(28):4314-32. PubMed ID: 12853969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SMAD3 represses androgen receptor-mediated transcription.
    Hayes SA; Zarnegar M; Sharma M; Yang F; Peehl DM; ten Dijke P; Sun Z
    Cancer Res; 2001 Mar; 61(5):2112-8. PubMed ID: 11280774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Transforming growth factor-beta signaling and cancer].
    Miyazono K
    Hum Cell; 2000 Sep; 13(3):97-101. PubMed ID: 11197777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel highly potent trivalent TGF-β receptor trap inhibits early-stage tumorigenesis and tumor cell invasion in murine Pten-deficient prostate glands.
    Qin T; Barron L; Xia L; Huang H; Villarreal MM; Zwaagstra J; Collins C; Yang J; Zwieb C; Kodali R; Hinck CS; Kim SK; Reddick RL; Shu C; O'Connor-McCourt MD; Hinck AP; Sun LZ
    Oncotarget; 2016 Dec; 7(52):86087-86102. PubMed ID: 27863384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TGF beta in prostate cancer: a growth inhibitor that can enhance tumorigenicity.
    Barrack ER
    Prostate; 1997 Apr; 31(1):61-70. PubMed ID: 9108888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of transforming growth factor Beta in human cancer.
    Elliott RL; Blobe GC
    J Clin Oncol; 2005 Mar; 23(9):2078-93. PubMed ID: 15774796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diverse biological effect and Smad signaling of bone morphogenetic protein 7 in prostate tumor cells.
    Yang S; Zhong C; Frenkel B; Reddi AH; Roy-Burman P
    Cancer Res; 2005 Jul; 65(13):5769-77. PubMed ID: 15994952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Smad7 induces tumorigenicity by blocking TGF-beta-induced growth inhibition and apoptosis.
    Halder SK; Beauchamp RD; Datta PK
    Exp Cell Res; 2005 Jul; 307(1):231-46. PubMed ID: 15922743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Smad expression in human atherosclerotic lesions: evidence for impaired TGF-beta/Smad signaling in smooth muscle cells of fibrofatty lesions.
    Kalinina N; Agrotis A; Antropova Y; Ilyinskaya O; Smirnov V; Tararak E; Bobik A
    Arterioscler Thromb Vasc Biol; 2004 Aug; 24(8):1391-6. PubMed ID: 15166010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TGF-BETA IN THE NATURAL HISTORY OF PROSTATE CANCER.
    Ahel J; Hudorović N; Vičić-Hudorović V; Nikles H
    Acta Clin Croat; 2019 Mar; 58(1):128-138. PubMed ID: 31363335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transforming growth factor-beta/Smads signaling induces transcription of the cell type-restricted ankyrin repeat protein CARP gene through CAGA motif in vascular smooth muscle cells.
    Kanai H; Tanaka T; Aihara Y; Takeda S; Kawabata M; Miyazono K; Nagai R; Kurabayashi M
    Circ Res; 2001 Jan; 88(1):30-6. PubMed ID: 11139470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transforming growth factor-beta1 and prostate cancer.
    Wikström P; Bergh A; Damber JE
    Scand J Urol Nephrol; 2000 Apr; 34(2):85-94. PubMed ID: 10903068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Beta-hydroxybutyrate-induced growth inhibition and collagen production in HK-2 cells are dependent on TGF-beta and Smad3.
    Guh JY; Chuang TD; Chen HC; Hung WC; Lai YH; Shin SJ; Chuang LY
    Kidney Int; 2003 Dec; 64(6):2041-51. PubMed ID: 14633126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Apoptosis incidence and protein expression of p53, TGF-beta receptor II, p27Kip1, and Smad4 in benign, premalignant, and malignant human prostate.
    Zeng L; Rowland RG; Lele SM; Kyprianou N
    Hum Pathol; 2004 Mar; 35(3):290-7. PubMed ID: 15017584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulatory mechanisms for transforming growth factor beta as an autocrine inhibitor in human hepatocellular carcinoma: implications for roles of smads in its growth.
    Matsuzaki K; Date M; Furukawa F; Tahashi Y; Matsushita M; Sugano Y; Yamashiki N; Nakagawa T; Seki T; Nishizawa M; Fujisawa J; Inoue K
    Hepatology; 2000 Aug; 32(2):218-27. PubMed ID: 10915727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mammalian transforming growth factor-betas: Smad signaling and physio-pathological roles.
    Javelaud D; Mauviel A
    Int J Biochem Cell Biol; 2004 Jul; 36(7):1161-5. PubMed ID: 15109563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.