These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 12643663)
1. Investigation of binding behavior of alpha- and beta-ionones to beta-lactoglobulin at different pH values using a diffusion-based NOE pumping technique. Jung DM; Ebeler SE J Agric Food Chem; 2003 Mar; 51(7):1988-93. PubMed ID: 12643663 [TBL] [Abstract][Full Text] [Related]
2. Determination of apparent binding constants for aroma compounds with beta-lactoglobulin by dynamic coupled column liquid chromatography. Jouenne E; Crouzet J J Agric Food Chem; 2000 Nov; 48(11):5396-400. PubMed ID: 11087491 [TBL] [Abstract][Full Text] [Related]
3. Nuclear magnetic resonance spectroscopic study of beta-lactoglobulin interactions with two flavor compounds, gamma-decalactone and beta-ionone. Lübke M; Guichard E; Tromelin A; Le Quéré JL J Agric Food Chem; 2002 Nov; 50(24):7094-9. PubMed ID: 12428965 [TBL] [Abstract][Full Text] [Related]
4. Bovine beta-lactoglobulin: interaction studies with palmitic acid. Ragona L; Fogolari F; Zetta L; Pérez DM; Puyol P; De Kruif K; Löhr F; Rüterjans H; Molinari H Protein Sci; 2000 Jul; 9(7):1347-56. PubMed ID: 10933500 [TBL] [Abstract][Full Text] [Related]
5. NMR studies of retinoid-protein interactions: the conformation of [13C]-beta-ionones bound to beta-lactoglobulin B. Curley RW; Sundaram AK; Fowble JW; Abildgaard F; Westler WM; Markley JL Pharm Res; 1999 May; 16(5):651-9. PubMed ID: 10350006 [TBL] [Abstract][Full Text] [Related]
6. Computational and experimental approaches assess the interactions between bovine beta-lactoglobulin and synthetic compounds of pharmacological interest. Eberini I; Rocco AG; Mantegazza M; Gianazza E; Baroni A; Vilardo MC; Donghi D; Galliano M; Beringhelli T J Mol Graph Model; 2008 Feb; 26(6):1004-13. PubMed ID: 17905618 [TBL] [Abstract][Full Text] [Related]
7. Complex coacervation between beta-lactoglobulin and Acacia gum: a nucleation and growth mechanism. Sanchez C; Mekhloufi G; Renard D J Colloid Interface Sci; 2006 Jul; 299(2):867-73. PubMed ID: 16530214 [TBL] [Abstract][Full Text] [Related]
8. Interactions between beta-lactoglobulin and aroma compounds: different binding behaviors as a function of ligand structure. Tavel L; Andriot I; Moreau C; Guichard E J Agric Food Chem; 2008 Nov; 56(21):10208-17. PubMed ID: 18928299 [TBL] [Abstract][Full Text] [Related]
9. Comparison of bovine and porcine beta-lactoglobulin: a mass spectrometric analysis. Invernizzi G; Samalikova M; Brocca S; Lotti M; Molinari H; Grandori R J Mass Spectrom; 2006 Jun; 41(6):717-27. PubMed ID: 16770828 [TBL] [Abstract][Full Text] [Related]
11. Porcine beta-lactoglobulin chemical unfolding: identification of a non-native alpha-helical intermediate. D'Alfonso L; Collini M; Ragona L; Ugolini R; Baldini G; Molinari H Proteins; 2005 Jan; 58(1):70-9. PubMed ID: 15526300 [TBL] [Abstract][Full Text] [Related]
12. pH-Induced structural transitions during complexation and coacervation of beta-lactoglobulin and acacia gum. Mekhloufi G; Sanchez C; Renard D; Guillemin S; Hardy J Langmuir; 2005 Jan; 21(1):386-94. PubMed ID: 15620329 [TBL] [Abstract][Full Text] [Related]
13. Computational and experimental approaches for assessing the interactions between the model calycin beta-lactoglobulin and two antibacterial fluoroquinolones. Eberini I; Fantucci P; Rocco AG; Gianazza E; Galluccio L; Maggioni D; Ben ID; Galliano M; Mazzitello R; Gaiji N; Beringhelli T Proteins; 2006 Nov; 65(3):555-67. PubMed ID: 17001652 [TBL] [Abstract][Full Text] [Related]
14. Unfolding and refolding of beta-lactoglobulin subjected to high hydrostatic pressure at different pH values and temperatures and its influence on proteolysis. Belloque J; Chicón R; López-Fandiño R J Agric Food Chem; 2007 Jun; 55(13):5282-8. PubMed ID: 17542606 [TBL] [Abstract][Full Text] [Related]
15. Inhibitory effects of β-ionone on amyloid fibril formation of β-lactoglobulin. Ma B; You X; Lu F Int J Biol Macromol; 2014 Mar; 64():162-7. PubMed ID: 24325860 [TBL] [Abstract][Full Text] [Related]
16. Fatty acids and retinoids bind independently and simultaneously to beta-lactoglobulin. Narayan M; Berliner LJ Biochemistry; 1997 Feb; 36(7):1906-11. PubMed ID: 9048577 [TBL] [Abstract][Full Text] [Related]
17. Fibrillar beta-lactoglobulin gels: Part 1. Fibril formation and structure. Gosal WS; Clark AH; Ross-Murphy SB Biomacromolecules; 2004; 5(6):2408-19. PubMed ID: 15530058 [TBL] [Abstract][Full Text] [Related]
18. Effect of thermal treatment, ionic strength, and pH on the short-term and long-term coalescence stability of beta-lactoglobulin emulsions. Tcholakova S; Denkov ND; Sidzhakova D; Campbell B Langmuir; 2006 Jul; 22(14):6042-52. PubMed ID: 16800657 [TBL] [Abstract][Full Text] [Related]
19. Binding affinity between dietary polyphenols and β-lactoglobulin negatively correlates with the protein susceptibility to digestion and total antioxidant activity of complexes formed. Stojadinovic M; Radosavljevic J; Ognjenovic J; Vesic J; Prodic I; Stanic-Vucinic D; Cirkovic Velickovic T Food Chem; 2013 Feb; 136(3-4):1263-71. PubMed ID: 23194522 [TBL] [Abstract][Full Text] [Related]
20. Monitoring the Tanford transition in beta-lactoglobulin by 8-anilino-1-naphthalene sulfonate and mass spectrometry. Santambrogio C; Grandori R Rapid Commun Mass Spectrom; 2008 Dec; 22(24):4049-54. PubMed ID: 19016256 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]