BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 12643690)

  • 1. Fluorescent detection of chemical warfare agents: functional group specific ratiometric chemosensors.
    Zhang SW; Swager TM
    J Am Chem Soc; 2003 Mar; 125(12):3420-1. PubMed ID: 12643690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromo-fluorogenic detection of nerve-agent mimics using triggered cyclization reactions in push-pull dyes.
    Costero AM; Parra M; Gil S; Gotor R; Mancini PM; Martínez-Máñez R; Sancenón F; Royo S
    Chem Asian J; 2010 Jul; 5(7):1573-85. PubMed ID: 20512798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A rhodamine-deoxylactam based sensor for chromo-fluorogenic detection of nerve agent simulant.
    Wu Z; Wu X; Yang Y; Wen TB; Han S
    Bioorg Med Chem Lett; 2012 Oct; 22(20):6358-61. PubMed ID: 22995618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescent sensors for organophosphorus nerve agent mimics.
    Dale TJ; Rebek J
    J Am Chem Soc; 2006 Apr; 128(14):4500-1. PubMed ID: 16594648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A FRET-based ratiometric fluorescent and colorimetric probe for the facile detection of organophosphonate nerve agent mimic DCP.
    Xuan W; Cao Y; Zhou J; Wang W
    Chem Commun (Camb); 2013 Nov; 49(89):10474-6. PubMed ID: 24080856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescent polymeric aggregates for selective response to sarin surrogates.
    Rusu AD; Moleavin IA; Hurduc N; Hamel M; Rocha L
    Chem Commun (Camb); 2014 Sep; 50(69):9965-8. PubMed ID: 25034965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visual and fluorogenic detection of a nerve agent simulant via a Lossen rearrangement of rhodamine-hydroxamate.
    Han S; Xue Z; Wang Z; Wen TB
    Chem Commun (Camb); 2010 Nov; 46(44):8413-5. PubMed ID: 20936197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultraviolet Raman spectra and cross-sections of the G-series nerve agents.
    Christesen SD; Pendell Jones J; Lochner JM; Hyre AM
    Appl Spectrosc; 2008 Oct; 62(10):1078-83. PubMed ID: 18926015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorometric, water-based sensors for the detection of nerve gas G mimics DMMP, DCP and DCNP.
    Wild A; Winter A; Hager MD; Schubert US
    Chem Commun (Camb); 2012 Jan; 48(7):964-6. PubMed ID: 22158657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient discovery of fluorescent chemosensors based on a biarylpyridine scaffold.
    Malashikhin SA; Baldridge KK; Finney NS
    Org Lett; 2010 Mar; 12(5):940-3. PubMed ID: 20131818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Concise and Efficient Fluorescent Probe via an Intromolecular Charge Transfer for the Chemical Warfare Agent Mimic Diethylchlorophosphate Vapor Detection.
    Yao J; Fu Y; Xu W; Fan T; Gao Y; He Q; Zhu D; Cao H; Cheng J
    Anal Chem; 2016 Feb; 88(4):2497-501. PubMed ID: 26776457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coupling Activity-Based Detection, Target Amplification, Colorimetric and Fluorometric Signal Amplification, for Quantitative Chemosensing of Fluoride Generated from Nerve Agents.
    Sun X; Reuther JF; Phillips ST; Anslyn EV
    Chemistry; 2017 Mar; 23(16):3903-3909. PubMed ID: 28117920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A porphyrin derivative containing 2-(oxymethyl)pyridine units showing unexpected ratiometric fluorescent recognition of Zn2+ with high selectivity.
    Li CY; Zhang XB; Dong YY; Ma QJ; Han ZX; Zhao Y; Shen GL; Yu RQ
    Anal Chim Acta; 2008 Jun; 616(2):214-21. PubMed ID: 18482606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Terpyridine-lanthanide complexes respond to fluorophosphate containing nerve gas G-agent surrogates.
    Shunmugam R; Tew GN
    Chemistry; 2008; 14(18):5409-12. PubMed ID: 18454436
    [No Abstract]   [Full Text] [Related]  

  • 15. "Covalent-Assembly"-Based Fluorescent Probe for Detection of a Nerve-Agent Mimic (DCP) via Lossen Rearrangement.
    Huo B; Du M; Shen A; Li M; Lai Y; Bai X; Gong A; Yang Y
    Anal Chem; 2019 Sep; 91(17):10979-10983. PubMed ID: 31373196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visualization of Ultrasensitive and Recyclable Dual-Channel Fluorescence Sensors for Chemical Warfare Agents Based on the State Dehybridization of Hybrid Locally Excited and Charge Transfer Materials.
    Li X; Lv Y; Chang S; Liu H; Mo W; Ma H; Zhou C; Zhang S; Yang B
    Anal Chem; 2019 Sep; 91(17):10927-10931. PubMed ID: 31305982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A ratiometric fluorescent viscosity sensor.
    Haidekker MA; Brady TP; Lichlyter D; Theodorakis EA
    J Am Chem Soc; 2006 Jan; 128(2):398-9. PubMed ID: 16402812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new approach to design ratiometric fluorescent probe for mercury(II) based on the Hg(2+)-promoted deprotection of thioacetals.
    Cheng X; Li Q; Qin J; Li Z
    ACS Appl Mater Interfaces; 2010 Apr; 2(4):1066-72. PubMed ID: 20423127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A 'chemically-gated' photoresponsive compound as a visible detector for organophosphorus nerve agents.
    Nourmohammadian F; Wu T; Branda NR
    Chem Commun (Camb); 2011 Oct; 47(39):10954-6. PubMed ID: 21901219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromo-Fluorogenic Detection of Soman and Its Simulant by Thiourea-Based Rhodamine Probe.
    Li S; Zheng Y; Chen W; Zheng M; Zheng H; Zhang Z; Cui Y; Zhong J; Zhao C
    Molecules; 2019 Feb; 24(5):. PubMed ID: 30813539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.