BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 12643705)

  • 21. Facile solution route to vertically aligned, selective growth of ZnO nanostructure arrays.
    Wang CH; Wong AS; Ho GW
    Langmuir; 2007 Nov; 23(24):11960-3. PubMed ID: 17941655
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Selected-control synthesis of ZnO nanowires and nanorods via a PEG-assisted route.
    Li Z; Xiong Y; Xie Y
    Inorg Chem; 2003 Dec; 42(24):8105-9. PubMed ID: 14632532
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multicomponent nanoparticles via self-assembly with cross-linked block copolymer surfactants.
    Kim BS; Taton TA
    Langmuir; 2007 Feb; 23(4):2198-202. PubMed ID: 17279714
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gram-scale synthesis of soluble, near-monodisperse gold nanorods and other anisotropic nanoparticles.
    Jana NR
    Small; 2005 Aug; 1(8-9):875-82. PubMed ID: 17193542
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanoscale composition mapping of segregation in micelles with tapping-mode atomic force microscopy.
    Aytun T; Mutaf OF; el-Atwani OJ; Ow-Yang CW
    Langmuir; 2008 Dec; 24(24):14183-7. PubMed ID: 19053651
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Polygalactose containing nanocages: the RAFT process for the synthesis of hollow sugar balls.
    Ting SR; Gregory AM; Stenzel MH
    Biomacromolecules; 2009 Feb; 10(2):342-52. PubMed ID: 19159200
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Vesicle-to-spherical micelle-to-tubular nanostructure transition of monomethoxy-poly(ethylene glycol)-poly(trimethylene carbonate) diblock copolymer.
    Kim SY; Lee KE; Han SS; Jeong B
    J Phys Chem B; 2008 Jun; 112(25):7420-3. PubMed ID: 18528976
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thermo-induced formation of unimolecular and multimolecular micelles from novel double hydrophilic multiblock copolymers of N,N-dimethylacrylamide and N-isopropylacrylamide.
    Zhou Y; Jiang K; Song Q; Liu S
    Langmuir; 2007 Dec; 23(26):13076-84. PubMed ID: 18027977
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cross-linked block copolymer micelles: functional nanostructures of great potential and versatility.
    O'Reilly RK; Hawker CJ; Wooley KL
    Chem Soc Rev; 2006 Nov; 35(11):1068-83. PubMed ID: 17057836
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Polymer-controlled crystallization of zinc oxide hexagonal nanorings and disks.
    Peng Y; Xu AW; Deng B; Antonietti M; Cölfen H
    J Phys Chem B; 2006 Feb; 110(7):2988-93. PubMed ID: 16494299
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fabrication of multiresponsive shell cross-linked micelles possessing pH-controllable core swellability and thermo-tunable corona permeability.
    Jiang X; Ge Z; Xu J; Liu H; Liu S
    Biomacromolecules; 2007 Oct; 8(10):3184-92. PubMed ID: 17887794
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A valid way of quasi-quantificationally controlling the self-assembly of block copolymers in confined space.
    Li Y; Ma R; Zhao L; Tao Q; Xiong D; An Y; Shi L
    Langmuir; 2009 Mar; 25(5):2757-64. PubMed ID: 19239189
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Self-assembled, thermosensitive micelles of a star block copolymer based on PMMA and PNIPAAm for controlled drug delivery.
    Wei H; Zhang X; Cheng C; Cheng SX; Zhuo RX
    Biomaterials; 2007 Jan; 28(1):99-107. PubMed ID: 16959312
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Investigation of a new thermosensitive block copolymer micelle: hydrolysis, disruption, and release.
    Pelletier M; Babin J; Tremblay L; Zhao Y
    Langmuir; 2008 Nov; 24(21):12664-70. PubMed ID: 18828616
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bi2O3 hierarchical nanostructures: controllable synthesis, growth mechanism, and their application in photocatalysis.
    Zhou L; Wang W; Xu H; Sun S; Shang M
    Chemistry; 2009; 15(7):1776-82. PubMed ID: 19115297
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Polymeric micelles and nanoparticles from block and statistical poly((RS)-3,3-dimethylmalic acid) derivatives: preparation and characterization.
    Ouhib F; Randriamahefa S; Wintgens V; Guérin P; Barbaud C
    Macromol Biosci; 2005 Apr; 5(4):299-305. PubMed ID: 15818582
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Single-walled carbon nanotube-based coaxial nanowires: synthesis, characterization, and electrical properties.
    Zhang X; Lü Z; Wen M; Liang H; Zhang J; Liu Z
    J Phys Chem B; 2005 Jan; 109(3):1101-7. PubMed ID: 16851066
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Using cylindrical domains of block copolymers to self-assemble and align metallic nanowires.
    Chai J; Buriak JM
    ACS Nano; 2008 Mar; 2(3):489-501. PubMed ID: 19206575
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Wires, plates, flowers, needles, and core-shells: diverse nanostructures of gold using polyaniline templates.
    Sajanlal PR; Sreeprasad TS; Nair AS; Pradeep T
    Langmuir; 2008 May; 24(9):4607-14. PubMed ID: 18366226
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Amphiphilic ABC triblock copolymer-assisted synthesis of core/shell structured CdTe nanowires.
    Niu H; Zhang L; Gao M; Chen Y
    Langmuir; 2005 Apr; 21(9):4205-10. PubMed ID: 15835996
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.