BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 12643810)

  • 1. Variation in the pH-dependent pre-steady-state and steady-state kinetic characteristics of cysteine-proteinase mechanism: evidence for electrostatic modulation of catalytic-site function by the neighbouring carboxylate anion.
    Hussain S; Pinitglang S; Bailey TS; Reid JD; Noble MA; Resmini M; Thomas EW; Greaves RB; Verma CS; Brocklehurst K
    Biochem J; 2003 Jun; 372(Pt 3):735-46. PubMed ID: 12643810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isomerization of the uncomplexed actinidin molecule: kinetic accessibility of additional steps in enzyme catalysis provided by solvent perturbation.
    Reid JD; Hussain S; Bailey TS; Sonkaria S; Sreedharan SK; Thomas EW; Resmini M; Brocklehurst K
    Biochem J; 2004 Mar; 378(Pt 2):699-703. PubMed ID: 14640975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Variation in aspects of cysteine proteinase catalytic mechanism deduced by spectroscopic observation of dithioester intermediates, kinetic analysis and molecular dynamics simulations.
    Reid JD; Hussain S; Sreedharan SK; Bailey TS; Pinitglang S; Thomas EW; Verma CS; Brocklehurst K
    Biochem J; 2001 Jul; 357(Pt 2):343-52. PubMed ID: 11439083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing the mechanism of hamster arylamine N-acetyltransferase 2 acetylation by active site modification, site-directed mutagenesis, and pre-steady state and steady state kinetic studies.
    Wang H; Vath GM; Gleason KJ; Hanna PE; Wagner CR
    Biochemistry; 2004 Jun; 43(25):8234-46. PubMed ID: 15209520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature-dependences of the kinetics of reactions of papain and actinidin with a series of reactivity probes differing in key molecular recognition features.
    Gul S; Mellor GW; Thomas EW; Brocklehurst K
    Biochem J; 2006 May; 396(1):17-21. PubMed ID: 16445383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differences in the chemical and catalytic characteristics of two crystallographically 'identical' enzyme catalytic sites. Characterization of actinidin and papain by a combination of pH-dependent substrate catalysis kinetics and reactivity probe studies targeted on the catalytic-site thiol group and its immediate microenvironment.
    Salih E; Malthouse JP; Kowlessur D; Jarvis M; O'Driscoll M; Brocklehurst K
    Biochem J; 1987 Oct; 247(1):181-93. PubMed ID: 2825655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ionization characteristics and chemical influences of aspartic acid residue 158 of papain and caricain determined by structure-related kinetic and computational techniques: multiple electrostatic modulators of active-centre chemistry.
    Noble MA; Gul S; Verma CS; Brocklehurst K
    Biochem J; 2000 Nov; 351 Pt 3(Pt 3):723-33. PubMed ID: 11042128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical mechanism of a cysteine protease, cathepsin C, as revealed by integration of both steady-state and pre-steady-state solvent kinetic isotope effects.
    Schneck JL; Villa JP; McDevitt P; McQueney MS; Thrall SH; Meek TD
    Biochemistry; 2008 Aug; 47(33):8697-710. PubMed ID: 18656960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A classical enzyme active center motif lacks catalytic competence until modulated electrostatically.
    Pinitglang S; Watts AB; Patel M; Reid JD; Noble MA; Gul S; Bokth A; Naeem A; Patel H; Thomas EW; Sreedharan SK; Verma C; Brocklehurst K
    Biochemistry; 1997 Aug; 36(33):9968-82. PubMed ID: 9254592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generation of nucleophilic character in the Cys25/His159 ion pair of papain involves Trp177 but not Asp158.
    Gul S; Hussain S; Thomas MP; Resmini M; Verma CS; Thomas EW; Brocklehurst K
    Biochemistry; 2008 Feb; 47(7):2025-35. PubMed ID: 18225918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alpha-helix dipoles and catalysis: absorption and Raman spectroscopic studies of acyl cysteine proteases.
    Doran JD; Carey PR
    Biochemistry; 1996 Sep; 35(38):12495-502. PubMed ID: 8823185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-function relationships in the cysteine proteinases actinidin, papain and papaya proteinase omega. Three-dimensional structure of papaya proteinase omega deduced by knowledge-based modelling and active-centre characteristics determined by two-hydronic-state reactivity probe kinetics and kinetics of catalysis.
    Topham CM; Salih E; Frazao C; Kowlessur D; Overington JP; Thomas M; Brocklehurst SM; Patel M; Thomas EW; Brocklehurst K
    Biochem J; 1991 Nov; 280 ( Pt 1)(Pt 1):79-92. PubMed ID: 1741760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variation in the P2-S2 stereochemical selectivity towards the enantiomeric N-acetylphenylalanylglycine 4-nitroanilides among the cysteine proteinases papain, ficin and actinidin.
    Patel M; Kayani IS; Mellor GW; Sreedharan S; Templeton W; Thomas EW; Thomas M; Brocklehurst K
    Biochem J; 1992 Jan; 281 ( Pt 2)(Pt 2):553-9. PubMed ID: 1736903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The amino-acid substituents of dipeptide substrates of cathepsin C can determine the rate-limiting steps of catalysis.
    Rubach JK; Cui G; Schneck JL; Taylor AN; Zhao B; Smallwood A; Nevins N; Wisnoski D; Thrall SH; Meek TD
    Biochemistry; 2012 Sep; 51(38):7551-68. PubMed ID: 22928782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clarification of the pH-dependent kinetic behaviour of papain by using reactivity probes and analysis of alkylation and catalysed acylation reactions in terms of multihydronic state models: implications for electrostatics calculations and interpretation of the consequences of site-specific mutations such as Asp-158-Asn and Asp-158-Glu.
    Mellor GW; Patel M; Thomas EW; Brocklehurst K
    Biochem J; 1993 Aug; 294 ( Pt 1)(Pt 1):201-10. PubMed ID: 8103322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of turnover of cefotaxime by the Enterobacter cloacae P99 and GCl beta-lactamases: two free enzyme forms of the P99 beta-lactamase detected by a combination of pre- and post-steady state kinetics.
    Kumar S; Adediran SA; Nukaga M; Pratt RF
    Biochemistry; 2004 Mar; 43(9):2664-72. PubMed ID: 14992604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A general framework of cysteine-proteinase mechanism deduced from studies on enzymes with structurally different analogous catalytic-site residues Asp-158 and -161 (papain and actinidin), Gly-196 (cathepsin B) and Asn-165 (cathepsin H). Kinetic studies up to pH 8 of the hydrolysis of N-alpha-benzyloxycarbonyl-L-arginyl-L-arginine 2-naphthylamide catalysed by cathepsin B and of L-arginine 2-naphthylamide catalysed by cathepsin H.
    Willenbrock F; Brocklehurst K
    Biochem J; 1985 Apr; 227(2):521-8. PubMed ID: 3890831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The electrostatic driving force for nucleophilic catalysis in L-arginine deiminase: a combined experimental and theoretical study.
    Li L; Li Z; Wang C; Xu D; Mariano PS; Guo H; Dunaway-Mariano D
    Biochemistry; 2008 Apr; 47(16):4721-32. PubMed ID: 18366187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chymopapain A. Purification and investigation by covalent chromatography and characterization by two-protonic-state reactivity-probe kinetics, steady-state kinetics and resonance Raman spectroscopy of some dithioacyl derivatives.
    Baines BS; Brocklehurst K; Carey PR; Jarvis M; Salih E; Storer AC
    Biochem J; 1986 Jan; 233(1):119-29. PubMed ID: 3513753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of the catalytic site of actinidin by using benzofuroxan as a reactivity probe with selectivity for the thiolate-imidazolium ion-pair systems of cysteine proteinases. Evidence that the reaction of the ion-pair of actinidin (pKI 3.0, pKII 9.6) is modulated by the state of ionization of a group associated with a molecular pKa of 5.5.
    Salih E; Brocklehurst K
    Biochem J; 1983 Sep; 213(3):713-8. PubMed ID: 6311173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.