BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 12644414)

  • 1. Adding lactate to the prime solution during hypothermic cardiopulmonary bypass: a quantitative acid-base analysis.
    Himpe D; Neels H; De Hert S; Van Cauwelaert P
    Br J Anaesth; 2003 Apr; 90(4):440-5. PubMed ID: 12644414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasma-Lyte 148 vs. Hartmann's solution for cardiopulmonary bypass pump prime: a prospective double-blind randomized trial.
    Weinberg L; Chiam E; Hooper J; Liskaser F; Hawkins AK; Massie D; Ellis A; Tan CO; Story D; Bellomo R
    Perfusion; 2018 May; 33(4):310-319. PubMed ID: 29144182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The aetiology and pathogenesis of cardiopulmonary bypass-associated metabolic acidosis using polygeline pump prime.
    Hayhoe M; Bellomo R; Liu G; McNicol L; Buxton B
    Intensive Care Med; 1999 Jul; 25(7):680-5. PubMed ID: 10470571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of pump prime in the etiology and pathogenesis of cardiopulmonary bypass-associated acidosis.
    Liskaser FJ; Bellomo R; Hayhoe M; Story D; Poustie S; Smith B; Letis A; Bennett M
    Anesthesiology; 2000 Nov; 93(5):1170-3. PubMed ID: 11046201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of the splanchnic circulation in acid-base balance during cardiopulmonary bypass.
    Hayhoe M; Bellomo R; Liu G; Kellum JA; McNicol L; Buxton B
    Crit Care Med; 1999 Dec; 27(12):2671-7. PubMed ID: 10628608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acid-base effects of a bicarbonate-balanced priming fluid during cardiopulmonary bypass: comparison with Plasma-Lyte 148. A randomised single-blinded study.
    Morgan TJ; Power G; Venkatesh B; Jones MA
    Anaesth Intensive Care; 2008 Nov; 36(6):822-9. PubMed ID: 19115651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Metabolic acidosis after cardiac surgery with cardiopulmonary bypass revisited with the use of the Stewart acid-base approach].
    Guéret G; Rossignol B; Kiss G; Wargnier JP; Corre O; Bezon E; Carre JL; Arvieux CC
    Ann Fr Anesth Reanim; 2007 Jan; 26(1):10-6. PubMed ID: 17142004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of pump prime on acidosis, strong-ion-difference and unmeasured ions during cardiopulmonary bypass.
    Liskaser F; Story DA; Hayhoe M; Poustie SJ; Bailey MJ; Bellomo R
    Anaesth Intensive Care; 2009 Sep; 37(5):767-72. PubMed ID: 19775041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The Stewart model. "Modern" approach to the interpretation of the acid-base metabolism].
    Rehm M; Conzen PF; Peter K; Finsterer U
    Anaesthesist; 2004 Apr; 53(4):347-57. PubMed ID: 15088097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of ringer's lactate and plasmalyt-a as cardiopulmonary bypass prime for bypass associated acidosis in valve replacement surgeries.
    Surabhi S; Kumar M
    Ann Card Anaesth; 2021; 24(1):36-41. PubMed ID: 33938829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acid-base changes caused by 5% albumin versus 6% hydroxyethyl starch solution in patients undergoing acute normovolemic hemodilution: a randomized prospective study.
    Rehm M; Orth V; Scheingraber S; Kreimeier U; Brechtelsbauer H; Finsterer U
    Anesthesiology; 2000 Nov; 93(5):1174-83. PubMed ID: 11046202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Defining acidosis in postoperative cardiac patients using Stewart's method of strong ion difference.
    Murray DM; Olhsson V; Fraser JI
    Pediatr Crit Care Med; 2004 May; 5(3):240-5. PubMed ID: 15115561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic acidosis developing during cardiopulmonary bypass is related to a decrease in strong ion difference.
    Alston RP; Cormack L; Collinson C
    Perfusion; 2004 May; 19(3):145-52. PubMed ID: 15298421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative analysis of acid-base balance in show jumpers before and after exercise.
    Aguilera-Tejero E; Estepa JC; López I; Bas S; Mayer-Valor R; Rodríguez M
    Res Vet Sci; 2000 Apr; 68(2):103-8. PubMed ID: 10756125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unmeasured anions in critically ill patients: can they predict mortality?
    Rocktaeschel J; Morimatsu H; Uchino S; Bellomo R
    Crit Care Med; 2003 Aug; 31(8):2131-6. PubMed ID: 12973170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Treating intraoperative hyperchloremic acidosis with sodium bicarbonate or tris-hydroxymethyl aminomethane: a randomized prospective study.
    Rehm M; Finsterer U
    Anesth Analg; 2003 Apr; 96(4):1201-1208. PubMed ID: 12651685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conventional or physicochemical approach in intensive care unit patients with metabolic acidosis.
    Moviat M; van Haren F; van der Hoeven H
    Crit Care; 2003 Jun; 7(3):R41-5. PubMed ID: 12793889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Equivalent metabolic acidosis with four colloids and saline on ex vivo haemodilution.
    Morgan TJ; Vellaichamy M; Cowley DM; Weier SL; Venkatesh B; Jones MA
    Anaesth Intensive Care; 2009 May; 37(3):407-14. PubMed ID: 19499860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relevance of colloid oncotic pressure regulation during neonatal and infant cardiopulmonary bypass: a prospective randomized study.
    Golab HD; Scohy TV; de Jong PL; Kissler J; Takkenberg JJ; Bogers AJ
    Eur J Cardiothorac Surg; 2011 Jun; 39(6):886-91. PubMed ID: 21055963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Priming solutions for cardiopulmonary bypass: comparison of three colloids.
    Himpe D; Van Cauwelaert P; Neels H; Stinkens D; Van den Fonteyne F; Theunissen W; Muylaert P; Hermans C; Goossens G; Moeskops J
    J Cardiothorac Vasc Anesth; 1991 Oct; 5(5):457-66. PubMed ID: 1932651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.