These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
90 related articles for article (PubMed ID: 12646225)
1. ZccR--a MerR-like regulator from Bordetella pertussis which responds to zinc, cadmium, and cobalt. Kidd SP; Brown NL Biochem Biophys Res Commun; 2003 Mar; 302(4):697-702. PubMed ID: 12646225 [TBL] [Abstract][Full Text] [Related]
2. Cd(II)-responsive and constitutive mutants implicate a novel domain in MerR. Caguiat JJ; Watson AL; Summers AO J Bacteriol; 1999 Jun; 181(11):3462-71. PubMed ID: 10348859 [TBL] [Abstract][Full Text] [Related]
3. A zinc(II)/lead(II)/cadmium(II)-inducible operon from the Cyanobacterium anabaena is regulated by AztR, an alpha3N ArsR/SmtB metalloregulator. Liu T; Golden JW; Giedroc DP Biochemistry; 2005 Jun; 44(24):8673-83. PubMed ID: 15952774 [TBL] [Abstract][Full Text] [Related]
4. 19F-NMR reveals metal and operator-induced allostery in MerR. Song L; Teng Q; Phillips RS; Brewer JM; Summers AO J Mol Biol; 2007 Aug; 371(1):79-92. PubMed ID: 17560604 [TBL] [Abstract][Full Text] [Related]
5. Cd-specific mutants of mercury-sensing regulatory protein MerR, generated by directed evolution. Hakkila KM; Nikander PA; Junttila SM; Lamminmäki UJ; Virta MP Appl Environ Microbiol; 2011 Sep; 77(17):6215-24. PubMed ID: 21764963 [TBL] [Abstract][Full Text] [Related]
6. Transcriptional activation of MerR family promoters in Cupriavidus metallidurans CH34. Julian DJ; Kershaw CJ; Brown NL; Hobman JL Antonie Van Leeuwenhoek; 2009 Aug; 96(2):149-59. PubMed ID: 19005773 [TBL] [Abstract][Full Text] [Related]
7. NmlR of Neisseria gonorrhoeae: a novel redox responsive transcription factor from the MerR family. Kidd SP; Potter AJ; Apicella MA; Jennings MP; McEwan AG Mol Microbiol; 2005 Sep; 57(6):1676-89. PubMed ID: 16135233 [TBL] [Abstract][Full Text] [Related]
8. DNA distortion mechanism for transcriptional activation by ZntR, a Zn(II)-responsive MerR homologue in Escherichia coli. Outten CE; Outten FW; O'Halloran TV J Biol Chem; 1999 Dec; 274(53):37517-24. PubMed ID: 10608803 [TBL] [Abstract][Full Text] [Related]
9. Elucidation of primary (alpha(3)N) and vestigial (alpha(5)) heavy metal-binding sites in Staphylococcus aureus pI258 CadC: evolutionary implications for metal ion selectivity of ArsR/SmtB metal sensor proteins. Busenlehner LS; Weng TC; Penner-Hahn JE; Giedroc DP J Mol Biol; 2002 Jun; 319(3):685-701. PubMed ID: 12054863 [TBL] [Abstract][Full Text] [Related]
10. Cloning and characterization of btr, a Bordetella pertussis gene encoding an FNR-like transcriptional regulator. Bannan JD; Moran MJ; MacInnes JI; Soltes GA; Friedman RL J Bacteriol; 1993 Nov; 175(22):7228-35. PubMed ID: 7693656 [TBL] [Abstract][Full Text] [Related]
11. Chromosomal locus for cadmium resistance in Pseudomonas putida consisting of a cadmium-transporting ATPase and a MerR family response regulator. Lee SW; Glickmann E; Cooksey DA Appl Environ Microbiol; 2001 Apr; 67(4):1437-44. PubMed ID: 11282588 [TBL] [Abstract][Full Text] [Related]
12. Structure and function of the Zn(II) binding site within the DNA-binding domain of the GAL4 transcription factor. Pan T; Coleman JE Proc Natl Acad Sci U S A; 1989 May; 86(9):3145-9. PubMed ID: 2497463 [TBL] [Abstract][Full Text] [Related]
13. Characterization of DNA binding sites for the BvgA protein of Bordetella pertussis. Karimova G; Ullmann A J Bacteriol; 1997 Jun; 179(11):3790-2. PubMed ID: 9171432 [TBL] [Abstract][Full Text] [Related]
14. A nickel-cobalt-sensing ArsR-SmtB family repressor. Contributions of cytosol and effector binding sites to metal selectivity. Cavet JS; Meng W; Pennella MA; Appelhoff RJ; Giedroc DP; Robinson NJ J Biol Chem; 2002 Oct; 277(41):38441-8. PubMed ID: 12163508 [TBL] [Abstract][Full Text] [Related]
15. Characterisation of CadR from Pseudomonas aeruginosa: a Cd(II)-responsive MerR homologue. Brocklehurst KR; Megit SJ; Morby AP Biochem Biophys Res Commun; 2003 Aug; 308(2):234-9. PubMed ID: 12901859 [TBL] [Abstract][Full Text] [Related]
16. Transcriptional switching by the MerR protein: activation and repression mutants implicate distinct DNA and mercury(II) binding domains. Shewchuk LM; Helmann JD; Ross W; Park SJ; Summers AO; Walsh CT Biochemistry; 1989 Mar; 28(5):2340-4. PubMed ID: 2497778 [TBL] [Abstract][Full Text] [Related]
17. Role of cysteinyl residues in sensing Pb(II), Cd(II), and Zn(II) by the plasmid pI258 CadC repressor. Sun Y; Wong MD; Rosen BP J Biol Chem; 2001 May; 276(18):14955-60. PubMed ID: 11278706 [TBL] [Abstract][Full Text] [Related]
18. The modular architecture of bacterial response regulators. Insights into the activation mechanism of the BvgA transactivator of Bordetella pertussis. Boucher PE; Menozzi FD; Locht C J Mol Biol; 1994 Aug; 241(3):363-77. PubMed ID: 8064853 [TBL] [Abstract][Full Text] [Related]
19. Nature of DNA binding and RNA polymerase interaction of the Bordetella pertussis BvgA transcriptional activator at the fha promoter. Boucher PE; Murakami K; Ishihama A; Stibitz S J Bacteriol; 1997 Mar; 179(5):1755-63. PubMed ID: 9045838 [TBL] [Abstract][Full Text] [Related]
20. Activation of Bvg-Repressed Genes in Bordetella pertussis by RisA Requires Cross Talk from Noncooperonic Histidine Kinase RisK. Chen Q; Ng V; Warfel JM; Merkel TJ; Stibitz S J Bacteriol; 2017 Nov; 199(22):. PubMed ID: 28827216 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]