BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 12646277)

  • 1. Binding of fatty acids to the uncoupling protein from brown adipose tissue mitochondria.
    Huang SG
    Arch Biochem Biophys; 2003 Apr; 412(1):142-6. PubMed ID: 12646277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-stage nucleotide binding mechanism and its implications to H+ transport inhibition of the uncoupling protein from brown adipose tissue mitochondria.
    Huang SG; Klingenberg M
    Biochemistry; 1996 Jun; 35(24):7846-54. PubMed ID: 8672485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The uncoupling protein UCP1 does not increase the proton conductance of the inner mitochondrial membrane by functioning as a fatty acid anion transporter.
    González-Barroso MM; Fleury C; Bouillaud F; Nicholls DG; Rial E
    J Biol Chem; 1998 Jun; 273(25):15528-32. PubMed ID: 9624141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutagenesis of the uncoupling protein of brown adipose tissue. Neutralization Of E190 largely abolishes pH control of nucleotide binding.
    Echtay KS; Bienengraeber M; Klingenberg M
    Biochemistry; 1997 Jul; 36(27):8253-60. PubMed ID: 9204870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of intrahelical arginine residues in functional properties of uncoupling protein (UCP1).
    Echtay KS; Bienengraeber M; Klingenberg M
    Biochemistry; 2001 May; 40(17):5243-8. PubMed ID: 11318647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Native UCP1 displays simple competitive kinetics between the regulators purine nucleotides and fatty acids.
    Shabalina IG; Jacobsson A; Cannon B; Nedergaard J
    J Biol Chem; 2004 Sep; 279(37):38236-48. PubMed ID: 15208325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of fatty acids on H+ transport activity of the reconstituted uncoupling protein.
    Winkler E; Klingenberg M
    J Biol Chem; 1994 Jan; 269(4):2508-15. PubMed ID: 8300577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescent nucleotide derivatives as specific probes for the uncoupling protein: thermodynamics and kinetics of binding and the control by pH.
    Huang SG; Klingenberg M
    Biochemistry; 1995 Jan; 34(1):349-60. PubMed ID: 7819218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstitution of recombinant uncoupling proteins: UCP1, -2, and -3 have similar affinities for ATP and are unaffected by coenzyme Q10.
    Jaburek M; Garlid KD
    J Biol Chem; 2003 Jul; 278(28):25825-31. PubMed ID: 12734183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substitutional mutations in the uncoupling protein-specific sequences of mitochondrial uncoupling protein UCP1 lead to the reduction of fatty acid-induced H+ uniport.
    Urbánková E; Hanák P; Skobisová E; Růzicka M; Jezek P
    Int J Biochem Cell Biol; 2003 Feb; 35(2):212-20. PubMed ID: 12479871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fatty acid interaction with mitochondrial uncoupling proteins.
    Jezek P
    J Bioenerg Biomembr; 1999 Oct; 31(5):457-66. PubMed ID: 10653474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retinoids activate proton transport by the uncoupling proteins UCP1 and UCP2.
    Rial E; González-Barroso M; Fleury C; Iturrizaga S; Sanchis D; Jiménez-Jiménez J; Ricquier D; Goubern M; Bouillaud F
    EMBO J; 1999 Nov; 18(21):5827-33. PubMed ID: 10545094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-function relationships in UCP1, UCP2 and chimeras: EPR analysis and retinoic acid activation of UCP2.
    Chomiki N; Voss JC; Warden CH
    Eur J Biochem; 2001 Feb; 268(4):903-13. PubMed ID: 11179956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uncoupling proteins 1 and 3 are regulated differently.
    Hagen T; Zhang CY; Vianna CR; Lowell BB
    Biochemistry; 2000 May; 39(19):5845-51. PubMed ID: 10801335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alkylsulfonates as probes of uncoupling protein transport mechanism. Ion pair transport demonstrates that direct H(+) translocation by UCP1 is not necessary for uncoupling.
    Jabůrek M; Varecha M; Jezek P; Garlid KD
    J Biol Chem; 2001 Aug; 276(34):31897-905. PubMed ID: 11468281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Limited proteolysis reveals conformational changes in uncoupling protein-1 from brown adipose tissue mitochondria.
    Huang SG
    Arch Biochem Biophys; 2003 Dec; 420(1):40-5. PubMed ID: 14622973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chimeric proteins between UCP1 and UCP3: the middle third of UCP1 is necessary and sufficient for activation by fatty acids.
    Hagen T; Lowell BB
    Biochem Biophys Res Commun; 2000 Sep; 276(2):642-8. PubMed ID: 11027525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nature of the masking of nucleotide-binding sites in brown adipose tissue mitochondria. Involvement of endogenous adenosine triphosphate.
    Huang SG; Klingenberg M
    Eur J Biochem; 1995 May; 229(3):718-25. PubMed ID: 7758468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential interaction of fatty acids and fatty acyl CoA esters with the purified/reconstituted brown adipose tissue mitochondrial uncoupling protein.
    Katiyar SS; Shrago E
    Biochem Biophys Res Commun; 1991 Mar; 175(3):1104-11. PubMed ID: 2025242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial proton leak in brown adipose tissue mitochondria of Ucp1-deficient mice is GDP insensitive.
    Monemdjou S; Kozak LP; Harper ME
    Am J Physiol; 1999 Jun; 276(6):E1073-82. PubMed ID: 10362620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.