BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 12646322)

  • 1. Mathematical modeling of in vitro enzymatic production of 2-Keto-L-gulonic acid using NAD(H) or NADP(H) as cofactors.
    Banta S; Boston M; Jarnagin A; Anderson S
    Metab Eng; 2002 Oct; 4(4):273-84. PubMed ID: 12646322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing an artificial metabolic pathway: engineering the cofactor specificity of Corynebacterium 2,5-diketo-D-gluconic acid reductase for use in vitamin C biosynthesis.
    Banta S; Swanson BA; Wu S; Jarnagin A; Anderson S
    Biochemistry; 2002 May; 41(20):6226-36. PubMed ID: 12009883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural alteration of cofactor specificity in Corynebacterium 2,5-diketo-D-gluconic acid reductase.
    Sanli G; Banta S; Anderson S; Blaber M
    Protein Sci; 2004 Feb; 13(2):504-12. PubMed ID: 14718658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alteration of the specificity of the cofactor-binding pocket of Corynebacterium 2,5-diketo-D-gluconic acid reductase A.
    Banta S; Swanson BA; Wu S; Jarnagin A; Anderson S
    Protein Eng; 2002 Feb; 15(2):131-40. PubMed ID: 11917149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Verification of a novel NADH-binding motif: combinatorial mutagenesis of three amino acids in the cofactor-binding pocket of Corynebacterium 2,5-diketo-D-gluconic acid reductase.
    Banta S; Anderson S
    J Mol Evol; 2002 Dec; 55(6):623-31. PubMed ID: 12486521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substrate selectivity of Gluconobacter oxydans for production of 2,5-diketo-D-gluconic acid and synthesis of 2-keto-L-gulonic acid in a multienzyme system.
    Ji A; Gao P
    Appl Biochem Biotechnol; 2001 Jun; 94(3):213-23. PubMed ID: 11563824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient production of 2-keto-L-gulonic acid from D-glucose in Gluconobacter oxydans ATCC9937 by mining key enzyme and transporter.
    Li G; Li D; Zeng W; Qin Z; Chen J; Zhou J
    Bioresour Technol; 2023 Sep; 384():129316. PubMed ID: 37315626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular determinants of the cofactor specificity of ribitol dehydrogenase, a short-chain dehydrogenase/reductase.
    Moon HJ; Tiwari MK; Singh R; Kang YC; Lee JK
    Appl Environ Microbiol; 2012 May; 78(9):3079-86. PubMed ID: 22344653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of 2,5-diketo-D-gluconic acid reductase A complexed with NADPH at 2.1-A resolution.
    Khurana S; Powers DB; Anderson S; Blaber M
    Proc Natl Acad Sci U S A; 1998 Jun; 95(12):6768-73. PubMed ID: 9618487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of a cytochrome P450BM3 reaction system linked by two-step cofactor regeneration catalyzed by a soluble transhydrogenase and glycerol dehydrogenase.
    Mouri T; Shimizu T; Kamiya N; Goto M; Ichinose H
    Biotechnol Prog; 2009; 25(5):1372-8. PubMed ID: 19725101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spaceflight-induced enhancement of 2-keto-L-gulonic acid production by a mixed culture of Ketogulonigenium vulgare and Bacillus thuringiensis.
    Yang W; Han L; Mandlaa M; Chen H; Jiang M; Zhang Z; Xu H
    Lett Appl Microbiol; 2013 Jul; 57(1):54-62. PubMed ID: 23581457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of the food grade expression systems NICE and pSIP for the production of 2,5-diketo-D-gluconic acid reductase from Corynebacterium glutamicum.
    Kaswurm V; Nguyen TT; Maischberger T; Kulbe KD; Michlmayr H
    AMB Express; 2013 Jan; 3(1):7. PubMed ID: 23356419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning, expression and characterization of a putative 2,5-diketo-D-gluconic acid reductase in Comamonas testosteroni.
    Chen Y; Ji W; Zhang H; Zhang X; Yu Y
    Chem Biol Interact; 2015 Jun; 234():229-35. PubMed ID: 25614138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient Production of 2,5-Diketo-D-gluconic Acid by Reducing Browning Levels During
    Li G; Shan X; Zeng W; Yu S; Zhang G; Chen J; Zhou J
    Front Bioeng Biotechnol; 2022; 10():918277. PubMed ID: 35875491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Equilibrium of the intracellular redox state for improving cell growth and L-lysine yield of Corynebacterium glutamicum by optimal cofactor swapping.
    Xu JZ; Ruan HZ; Chen XL; Zhang F; Zhang W
    Microb Cell Fact; 2019 Apr; 18(1):65. PubMed ID: 30943966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The arginine 276 anchor for NADP(H) dictates fluorescence kinetic transients in 3 alpha-hydroxysteroid dehydrogenase, a representative aldo-keto reductase.
    Ratnam K; Ma H; Penning TM
    Biochemistry; 1999 Jun; 38(24):7856-64. PubMed ID: 10387026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering a d-lactate dehydrogenase that can super-efficiently utilize NADPH and NADH as cofactors.
    Meng H; Liu P; Sun H; Cai Z; Zhou J; Lin J; Li Y
    Sci Rep; 2016 Apr; 6():24887. PubMed ID: 27109778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Throughput Screening of a 2-Keto-L-Gulonic Acid-Producing
    Chen Y; Liu L; Shan X; Du G; Zhou J; Chen J
    Front Bioeng Biotechnol; 2019; 7():385. PubMed ID: 31921801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular modeling of substrate binding in wild-type and mutant Corynebacteria 2,5-diketo-D-gluconate reductases.
    Khurana S; Sanli G; Powers DB; Anderson S; Blaber M
    Proteins; 2000 Apr; 39(1):68-75. PubMed ID: 10737928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The cofactor preference of glucose-6-phosphate dehydrogenase from Escherichia coli--modeling the physiological production of reduced cofactors.
    Olavarría K; Valdés D; Cabrera R
    FEBS J; 2012 Jul; 279(13):2296-309. PubMed ID: 22519976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.