These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 12646383)

  • 1. Annealing function of GroEL: structural and bioinformatic analysis.
    Stan G; Thirumalai D; Lorimer GH; Brooks BR
    Biophys Chem; 2003; 100(1-3):453-67. PubMed ID: 12646383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Allostery wiring diagrams in the transitions that drive the GroEL reaction cycle.
    Tehver R; Chen J; Thirumalai D
    J Mol Biol; 2009 Mar; 387(2):390-406. PubMed ID: 19121324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying natural substrates for chaperonins using a sequence-based approach.
    Stan G; Brooks BR; Lorimer GH; Thirumalai D
    Protein Sci; 2005 Jan; 14(1):193-201. PubMed ID: 15576562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupling between allosteric transitions in GroEL and assisted folding of a substrate protein.
    Stan G; Lorimer GH; Thirumalai D; Brooks BR
    Proc Natl Acad Sci U S A; 2007 May; 104(21):8803-8. PubMed ID: 17496143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Factors governing the substrate recognition by GroEL chaperone: a sequence correlation approach.
    Chaudhuri TK; Gupta P
    Cell Stress Chaperones; 2005; 10(1):24-36. PubMed ID: 15832945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gly192 at hinge 2 site in the chaperonin GroEL plays a pivotal role in the dynamic apical domain movement that leads to GroES binding and efficient encapsulation of substrate proteins.
    Machida K; Fujiwara R; Tanaka T; Sakane I; Hongo K; Mizobata T; Kawata Y
    Biochim Biophys Acta; 2009 Sep; 1794(9):1344-54. PubMed ID: 19130907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leu309 plays a critical role in the encapsulation of substrate protein into the internal cavity of GroEL.
    Koike-Takeshita A; Shimamura T; Yokoyama K; Yoshida M; Taguchi H
    J Biol Chem; 2006 Jan; 281(2):962-7. PubMed ID: 16239229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of the native chaperonin complex from Thermus thermophilus revealed unexpected asymmetry at the cis-cavity.
    Shimamura T; Koike-Takeshita A; Yokoyama K; Masui R; Murai N; Yoshida M; Taguchi H; Iwata S
    Structure; 2004 Aug; 12(8):1471-80. PubMed ID: 15296740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GroEL and the GroEL-GroES Complex.
    Ishii N
    Subcell Biochem; 2017; 83():483-504. PubMed ID: 28271487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward a mechanism for GroEL.GroES chaperone activity: an ATPase-gated and -pulsed folding and annealing cage.
    Corrales FJ; Fersht AR
    Proc Natl Acad Sci U S A; 1996 Apr; 93(9):4509-12. PubMed ID: 8633099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GroEL recognises sequential and non-sequential linear structural motifs compatible with extended beta-strands and alpha-helices.
    Chatellier J; Buckle AM; Fersht AR
    J Mol Biol; 1999 Sep; 292(1):163-72. PubMed ID: 10493865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex.
    Xu Z; Horwich AL; Sigler PB
    Nature; 1997 Aug; 388(6644):741-50. PubMed ID: 9285585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic model for the coupling between allosteric transitions in GroEL and substrate protein folding and aggregation.
    Tehver R; Thirumalai D
    J Mol Biol; 2008 Apr; 377(4):1279-95. PubMed ID: 18313071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the kinetic requirements for enhancement of protein folding rates in the GroEL cavity.
    Betancourt MR; Thirumalai D
    J Mol Biol; 1999 Apr; 287(3):627-44. PubMed ID: 10092464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Signalling networks and dynamics of allosteric transitions in bacterial chaperonin GroEL: implications for iterative annealing of misfolded proteins.
    Thirumalai D; Hyeon C
    Philos Trans R Soc Lond B Biol Sci; 2018 Jun; 373(1749):. PubMed ID: 29735736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A kinetic analysis of the nucleotide-induced allosteric transitions of GroEL.
    Cliff MJ; Kad NM; Hay N; Lund PA; Webb MR; Burston SG; Clarke AR
    J Mol Biol; 1999 Oct; 293(3):667-84. PubMed ID: 10543958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A thermophilic mini-chaperonin contains a conserved polypeptide-binding surface: combined crystallographic and NMR studies of the GroEL apical domain with implications for substrate interactions.
    Hua Q; Dementieva IS; Walsh MA; Hallenga K; Weiss MA; Joachimiak A
    J Mol Biol; 2001 Feb; 306(3):513-25. PubMed ID: 11178910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of nucleotide-binding regions in the chaperonin proteins GroEL and GroES.
    Martin J; Geromanos S; Tempst P; Hartl FU
    Nature; 1993 Nov; 366(6452):279-82. PubMed ID: 7901771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Residues in chaperonin GroEL required for polypeptide binding and release.
    Fenton WA; Kashi Y; Furtak K; Horwich AL
    Nature; 1994 Oct; 371(6498):614-9. PubMed ID: 7935796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of amino acid residues at nucleotide-binding sites of chaperonin GroEL/GroES and cpn10 by photoaffinity labeling with 2-azido-adenosine 5'-triphosphate.
    Bramhall EA; Cross RL; Rospert S; Steede NK; Landry SJ
    Eur J Biochem; 1997 Mar; 244(2):627-34. PubMed ID: 9119033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.