These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 12646701)

  • 1. Mineralized tissue and vertebrate evolution: the secretory calcium-binding phosphoprotein gene cluster.
    Kawasaki K; Weiss KM
    Proc Natl Acad Sci U S A; 2003 Apr; 100(7):4060-5. PubMed ID: 12646701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutionary genetics of vertebrate tissue mineralization: the origin and evolution of the secretory calcium-binding phosphoprotein family.
    Kawasaki K; Weiss KM
    J Exp Zool B Mol Dev Evol; 2006 May; 306(3):295-316. PubMed ID: 16358265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SCPP gene evolution and the dental mineralization continuum.
    Kawasaki K; Weiss KM
    J Dent Res; 2008 Jun; 87(6):520-31. PubMed ID: 18502959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene duplication and the evolution of vertebrate skeletal mineralization.
    Kawasaki K; Buchanan AV; Weiss KM
    Cells Tissues Organs; 2007; 186(1):7-24. PubMed ID: 17627116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic basis for the evolution of vertebrate mineralized tissue.
    Kawasaki K; Suzuki T; Weiss KM
    Proc Natl Acad Sci U S A; 2004 Aug; 101(31):11356-61. PubMed ID: 15272073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The evolution of milk casein genes from tooth genes before the origin of mammals.
    Kawasaki K; Lafont AG; Sire JY
    Mol Biol Evol; 2011 Jul; 28(7):2053-61. PubMed ID: 21245413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenogenetic drift in evolution: the changing genetic basis of vertebrate teeth.
    Kawasaki K; Suzuki T; Weiss KM
    Proc Natl Acad Sci U S A; 2005 Dec; 102(50):18063-8. PubMed ID: 16332957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The SCPP gene repertoire in bony vertebrates and graded differences in mineralized tissues.
    Kawasaki K
    Dev Genes Evol; 2009 Mar; 219(3):147-57. PubMed ID: 19255778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Early evolution of vertebrate skeletal tissues and cellular interactions, and the canalization of skeletal development.
    Donoghue PC; Sansom IJ; Downs JP
    J Exp Zool B Mol Dev Evol; 2006 May; 306(3):278-94. PubMed ID: 16555304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The SCPP gene family and the complexity of hard tissues in vertebrates.
    Kawasaki K
    Cells Tissues Organs; 2011; 194(2-4):108-12. PubMed ID: 21576905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Convergent losses of SCPP genes and ganoid scales among non-teleost actinopterygians.
    Mikami M; Ineno T; Thompson AW; Braasch I; Ishiyama M; Kawasaki K
    Gene; 2022 Feb; 811():146091. PubMed ID: 34864098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the origins of the extracellular matrix in vertebrates.
    Huxley-Jones J; Robertson DL; Boot-Handford RP
    Matrix Biol; 2007 Jan; 26(1):2-11. PubMed ID: 17055232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionary history of the alpha2,8-sialyltransferase (ST8Sia) gene family: tandem duplications in early deuterostomes explain most of the diversity found in the vertebrate ST8Sia genes.
    Harduin-Lepers A; Petit D; Mollicone R; Delannoy P; Petit JM; Oriol R
    BMC Evol Biol; 2008 Sep; 8():258. PubMed ID: 18811928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SCPP genes in the coelacanth: tissue mineralization genes shared by sarcopterygians.
    Kawasaki K; Amemiya CT
    J Exp Zool B Mol Dev Evol; 2014 Sep; 322(6):390-402. PubMed ID: 25243252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of Vertebrate Adam Genes; Duplication of Testicular Adams from Ancient Adam9/9-like Loci.
    Bahudhanapati H; Bhattacharya S; Wei S
    PLoS One; 2015; 10(8):e0136281. PubMed ID: 26308360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolutionary genomics and adaptive evolution of the Hedgehog gene family (Shh, Ihh and Dhh) in vertebrates.
    Pereira J; Johnson WE; O'Brien SJ; Jarvis ED; Zhang G; Gilbert MT; Vasconcelos V; Antunes A
    PLoS One; 2014; 9(12):e74132. PubMed ID: 25549322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tracing the evolutionary origin of vertebrate skeletal tissues: insights from cephalochordate amphioxus.
    Yong LW; Yu JK
    Curr Opin Genet Dev; 2016 Aug; 39():55-62. PubMed ID: 27318694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The amelogenin story: origin and evolution.
    Sire JY; Delgado S; Girondot M
    Eur J Oral Sci; 2006 May; 114 Suppl 1():64-77; discussion 93-5, 379-80. PubMed ID: 16674665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution of the vertebrate neurotrophin and Trk receptor gene families.
    Hallböök F
    Curr Opin Neurobiol; 1999 Oct; 9(5):616-21. PubMed ID: 10508739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parallel Evolution of Ameloblastic scpp Genes in Bony and Cartilaginous Vertebrates.
    Leurs N; Martinand-Mari C; Marcellini S; Debiais-Thibaud M
    Mol Biol Evol; 2022 May; 39(5):. PubMed ID: 35535508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.