These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 12647179)

  • 1. Direct nocturnal water transfer from oaks to their mycorrhizal symbionts during severe soil drying.
    Querejeta JI; Egerton-Warburton LM; Allen MF
    Oecologia; 2003 Jan; 134(1):55-64. PubMed ID: 12647179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Common mycorrhizal networks provide a potential pathway for the transfer of hydraulically lifted water between plants.
    Egerton-Warburton LM; Querejeta JI; Allen MF
    J Exp Bot; 2007; 58(6):1473-83. PubMed ID: 17350936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantification of water uptake by arbuscular mycorrhizal hyphae and its significance for leaf growth, water relations, and gas exchange of barley subjected to drought stress.
    Khalvati MA; Hu Y; Mozafar A; Schmidhalter U
    Plant Biol (Stuttg); 2005 Nov; 7(6):706-12. PubMed ID: 16388474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Topographic position modulates the mycorrhizal response of oak trees to interannual rainfall variability.
    Querejeta JI; Egerton-Warburton LM; Allen MF
    Ecology; 2009 Mar; 90(3):649-62. PubMed ID: 19341136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress.
    Porcel R; Ruiz-Lozano JM
    J Exp Bot; 2004 Aug; 55(403):1743-50. PubMed ID: 15208335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Importance of internal hydraulic redistribution for prolonging the lifespan of roots in dry soil.
    Bauerle TL; Richards JH; Smart DR; Eissenstat DM
    Plant Cell Environ; 2008 Feb; 31(2):177-86. PubMed ID: 18028280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of ectomycorrhizal mycelial growth and P transfer to the host plant in response to low and high soil P availability.
    Torres Aquino M; Plassard C
    FEMS Microbiol Ecol; 2004 May; 48(2):149-56. PubMed ID: 19712398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ecological aspects of mycorrhizal symbiosis: with special emphasis on the functional diversity of interactions involving the extraradical mycelium.
    Finlay RD
    J Exp Bot; 2008; 59(5):1115-26. PubMed ID: 18349054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid turnover of hyphae of mycorrhizal fungi determined by AMS microanalysis of 14C.
    Staddon PL; Ramsey CB; Ostle N; Ineson P; Fitter AH
    Science; 2003 May; 300(5622):1138-40. PubMed ID: 12750519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disruption of root carbon transport into forest humus stimulates fungal opportunists at the expense of mycorrhizal fungi.
    Lindahl BD; de Boer W; Finlay RD
    ISME J; 2010 Jul; 4(7):872-81. PubMed ID: 20220789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ectomycorrhizal colonization slows root decomposition: the post-mortem fungal legacy.
    Langley JA; Chapman SK; Hungate BA
    Ecol Lett; 2006 Aug; 9(8):955-9. PubMed ID: 16913939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of ectomycorrhizal colonization and drought on reactive oxygen species metabolism of Nothofagus dombeyi roots.
    Alvarez M; Huygens D; Fernandez C; GacitĂșa Y; Olivares E; Saavedra I; Alberdi M; Valenzuela E
    Tree Physiol; 2009 Aug; 29(8):1047-57. PubMed ID: 19483186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ectomycorrhizal responses to organic and inorganic nitrogen sources when associating with two host species.
    Avolio ML; Tuininga AR; Lewis JD; Marchese M
    Mycol Res; 2009 Aug; 113(Pt 8):897-907. PubMed ID: 19465124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A phosphate transporter from the mycorrhizal fungus Glomus versiforme.
    Harrison MJ; van Buuren ML
    Nature; 1995 Dec; 378(6557):626-9. PubMed ID: 8524398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of drought on mycorrhizas of beech (Fagus sylvatica L.): changes in community structure, and the content of carbohydrates and nitrogen storage bodies of the fungi.
    Shi L; Guttenberger M; Kottke I; Hampp R
    Mycorrhiza; 2002 Dec; 12(6):303-11. PubMed ID: 12466918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role and influence of mycorrhizal fungi on radiocesium accumulation by plants.
    de Boulois HD; Joner EJ; Leyval C; Jakobsen I; Chen BD; Roos P; Thiry Y; Rufyikiri G; Delvaux B; Declerck S
    J Environ Radioact; 2008 May; 99(5):785-800. PubMed ID: 18055077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of temperature on the arbuscular mycorrhizal (AM) symbiosis: growth responses of the host plant and its AM fungal partner.
    Heinemeyer A; Fitter AH
    J Exp Bot; 2004 Feb; 55(396):525-34. PubMed ID: 14739273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efflux of hydraulically lifted water from mycorrhizal fungal hyphae during imposed drought.
    Egerton-Warburton LM; Querejeta JI; Allen MF
    Plant Signal Behav; 2008 Jan; 3(1):68-71. PubMed ID: 19704776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Programming good relations--development of the arbuscular mycorrhizal symbiosis.
    Reinhardt D
    Curr Opin Plant Biol; 2007 Feb; 10(1):98-105. PubMed ID: 17127091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differences in the species composition of arbuscular mycorrhizal fungi in spore, root and soil communities in a grassland ecosystem.
    Hempel S; Renker C; Buscot F
    Environ Microbiol; 2007 Aug; 9(8):1930-8. PubMed ID: 17635540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.